
57THE BOUNDED RATIONALITY CONSTRAINT: EXPERINNNTRL AND 1/2
FMYTICRL RESULTSMU MASSACHUSETTS INST OF TECH
CUURIDGE LAB FOR INFORMATION AND D. R A LOUVET

7U LSFIEID JUN988 LIDS-TH-i771 NSSBI4-85-K-9329 F/G 12/4 NTh~m~nrnr!niHiurr9nrrnu



L~La
U. IM'3.

QU

m '"o~a
I1i.5 11.4



JUNE 1988 LIDS-TH-1771

- Research Supported By:

Office of Naval ResearchD y Conxtract N00014-85-K-039

joint Directors of Laboratories
Office of Naval Research,
Contract N0004-5-K-0782.

-14

- I

Anne-Claire Alice Louvet

.1 ,, -ELECTE

*Laboratory for Information and Decision Systems
* MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

DWVbutkm Uuhft



JUNE 1988 LIDS-TM- 1771

THE BOUNDED RATIONALITY CONSTRAINT:

EXPERIMENTAL AND ANALYTICAL RESULTS

by

ANNE-CLAIRE ALICE LOU'VET

This report is based on the unaltered thesis of Anne-Claire A. Louvet, submitted in partial
fulfillment of the requirements for the degree of Master of Science in Operations Research
at the Massachusetts Institute of Technology. The research was conducted at the MIT
Laboratory for Information and Decision Systems with support provided by the Office of
Naval Research under contract no. N0001I4-85-K-0329 and by the Basic Research Group,
Technical Panel on C3 , Joint Directors of Laboratories under ONR contract no.
N00014-85-0782.

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139



THE BOUNDED RATIONALITY CONSTRAINT: EXPERIMENTAL AND

ANALYTICAL RESULTS S

by

ANNE-CLAIRE ALICE LOUVET

S.B., Massachusetts Institute of Technology
(1986)

SUBMITED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE

IN OPERATIONS RESEARCH

at the

MASSACHUSET'TS INSTITUTE OF TECHNOLOGY

June 1988

© Massachusetts Institute of Technology

Signature of Author_ _ _ _ _ __ _ _
ql Interdepartmental Program in Operations Research

May 13, 1988

Certified by 6 -4wa .
Dr. Alexander H. Levis

Thesis Supervisor

Accepted by
Prof. Amedeo R. Odoni

Graduate Registration Officer, Operations Research Center

-wQ



THE BOUNDED RATIONALITY CONSTRAINT: EXPERIMENTAL
AND ANALYTICAL RESULTS

by

Anne-Claire A. Louvet

Submitted to the Department of Electrical Engineering and Computer Science

on May 13, 1988 in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research.

ABSTRACT

The bounded rationality constraint sets an upper limit on the rate with which

decisionmakers can process information satisfactorily. This rate is studied both

experimentally and analytically. A simple computer game for a single decisionmaker was

used in which subjects were asked to find the smallest of a set of ratios present on the

screen for a limited amount of time. Both the amount of time (twelve values) and the

number of ratios (two values) were varied A Gompertz curve is used to model the

experimental results and establish the existence of a time threshold beyond which

performance decreased significantly, An information theoretic model of the cognitive

workload is used to estimate the workload associated with the tasks. The time threshold T*

and the cognitive workload lead to a value for the bounded rationality constraint for each

subject and each number of ratios. The distribution of the bounded rationality constraint

across subjects for each number of ratios is found to be normal. Also, the bounded

rationality of each subject as the number of ratios is changed does not vary significantly.

These results may be used in the design of multi-person experiments and eventually in the

methodology for organization design. First, a single value of the bounded rationality

constraint for each decisionmaker would be needed for similar types of tasks. Second, _ _,

since the distribution of the bounded rationality constraint across subjects appears to be .'*

normal, establishing the threshold level for a sample of decisionmakers could be sufficient

to estimate the level for a larger population. ( -' - []
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CHAPTER I

INTRODUCTION

1.1 OVERVIEW

Performance of human decisionmakers under time constraints is a critical measure in

information processing and decisionmaking organizations, especially when the time
constraint is very severe as for example in tactical military organizations. One of the major
determinants of performance of individuals under time constraint is their ability to increase
their rate of processing as the rate of information input to the system increases. The
hypothesis is that human decisionmakers may not increase their processing rate
indefinitely. March (1978), developed the idea that decisionmakers are limited by the
"cognitive capabilities of human beings," and introduced the concept of bounded
rationality. It is assumed that as the rate of input information increases, subjects reach a
critical rate of information processing after which performance decreases drastically in an
unpredictable manner. This rate, identified as the bounded rationality constraint, has been
related to the cognitive workload associated with the different tasks to be performed as well
as the input rate of information using information theory (Levis,1984).

1.2 STATEMENT OF THE PROBLEM

No experimental work has been done to study the bounded rationality constraint of
human decisionmakers. The purpose of this thesis is to confirm experimentally the
existence of a maximum information processing rate and investigate its stability both across
tasks aid across people. Because the bounded rationality constraint is defined as an
information processing rate, two critical values are involved: the task input interarrival rate
and the amount of information processing required to perform the task. Therefore, bothY.
experimental results and analytical results are required. First, an experiment was designed
and run under the direction of Dr. Jeff T. Casey at the Laboratory for Information and
Decision Sytems. The results were analyzed to estimate the maximum task interarrival rate
before the decisionmakers' performance decreased significantly. Then, the amount of
information processing required to perform the task of the experiment was computed using
N-dimensional information theory.
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The hypotheses which are posed are the following. First, the bounded rationality

constraint exists and may be identified experimentally by a sharp decrease in performance.

Second, when considering similar tasks, the maximum processing rate should be stable

within an individual. Finally, it is hypothesized that the bounded rationality constraint is

reasonably stable across well trained subjects.

1.3 THE THESIS IN OUTLINE

The second chapter of this thesis, Chapter II , presents an overview of workload and

the general analytical models that are used to analyze and model the experiment. The

experimental procedures are described and explained in Chapter 111. Chapter IV analyzes

the obtained results and the first conclusion is drawn to affirm the existence of the bounded

rationality constraint. Postulations are made about the stability of the bounded rationality

constraint both across similar tasks and across decisionmakers. Chapter V describes the

different algorithms that were chosen as models of the subjects' decision process, and

attests the models' plausibility by comparing the performance of the algorithms'

simulations and the subjects' performance. In Chapter VI, the methodology and

assumptions used to compute the workload of each algorithm are detailed, and the

numerical values are evaluated for each algorithm. Finally in Chapter VII, the bounded

rationality constraint is derived for each subject for two different tasks and the hypotheses

are tested. The bounded rationality does not only exist, but is both stable across similar

tasks and across subjects.

N N N % 0
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CHAPTER 1

THE ANALYlTICAL TOOLS

2.1 WORKLOAD

The analytical framework, used for modeling the simplified air-defense tasks
presented in this thesis, is that of n-dimensional information theory. It is build upon two

primary quantities: entropy and transmission. Entropy is the fundamental measure of

information and uncertainty : given a variable x, an element of the alphabet X, occurring
with probability p(x), the entropy of x, H(x), is defined as follows:

H(x) =-- px log p(x) (2.1)
x

Entropy is defined in bits when the base of the logarithm is two. Entropy is also defined as

the average information or uncertainty of x, where information does not refer to the content
of the variable x, but rather to the average amount by which the knowledge of x reduces the

uncertainty about it.

Transmisison T(x:y) is also known as mutual information. The transmission

between variables x and y, elements of the alphabets X and Y, given p(x), p(y), and p(xly)

(the conditional probability of x, given the value of y), is defined as follows:

T(x:y) a H(x) - Hy(x) (2.2)

where

HY(x) - p(y) I p(xly) log p(xly) (2.3)
y x

is the conditional uncertainty in the variable x, given full knowledge of the value of the
variable y. Transmission may be interpreted as the amount by which knowledge of x

reduces the uncertainty in y, or vice versa, as it is a symmetric quantity in x and y.

12
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McGill (1954) generalized this basic two-variable input-output theory to N

dimensions by extending Eq. (2.2):

T(xl:x2:...:XN) = 1 H(xi) - H(xl,x2,....,XN) (2.4)

The N-dimensional mutual information measures the total constraint or

interrelatedness holding among all N variables of a system.

The workload surrogate, denoted by G, is defined as being the total processing

activity of the system, i.e., the sum of the entropy of all the variables in the system.

N

G- H(wi) (2.5)
1=I

Using the Partition Law of Information, noted PLI (Conant, 1976), the total activity

G may be decomposed into components that characterize how information may be

transformed as it is processed by a system. For a system with N-1 internal variables, w1

through WN-l, and an output variable, y, also called wN, the law states

N

H(w) = T(x:y) + T (x:w,w 2 .... ,w. 1) + T(w,:w2:...:wN.1 :y)i=1

H1 (w,w 2 .. ,w.ly) (2.6)

and is easily derived using information theoretic identities.

The left-hand side of Eq. (2.6) represents the total activity, G, of the system. The

other terms of equation may be interpreted in the following way. The first term, T(x:y), is

called throughput and is designated Gt. It measures the amount by which the output of the

system is related to the input. The second quantity, Ty(x:wiw2 ... w..WN]),

Ty(x:wl,w 2,....wNi) = T(x:w1 ,W2,...,.. 1WN,y) - T(x:y) (2.7)

13



is called blockage and is designated Gb. Blockage may be thought of as the amount of

information in the input to the system that is not included in the outpout. The third term,

T(w1 :W2:...:WN.:y) is called coordination and is designated Gc. It is the N-dimensional

transmission of the system, i.e., the amount by which all of the internal variables in the

system constrain each other. The last term, Hx(w,wz,...,w. 1,y), designated by Gn ,

represents the uncertainty that remains in the system variables when the input is completely

known. Although this information is called 'noise' since it originates within the system, it

is not necessarily adverse, as the word usually connotes; the decisionmaker may introduce

information previously held to ease the decision process. The partition law may be

abbreviated:

G = Gt + Gb + Gc + Gn (2.8)

2.2 THE DECISION-MAKING MODEL

2.2.1 Overview of the Model

Whereas in classical decision theory the decisionmaking organization has an

unlimited amount of time in making the decision, in tactical battle situations, time pressure

is one of the most critical features of the decisionmaing process. In the first case, the

decisionmaking organization has a good knowledge of all the actions that may be taken,

and reasonable estimation of the consequences or costs of each action. In the latter case, as

mentioned in the decision-analysis literature, the ability of the decisionmaking organization

to analyze and process the input messages, formulate actions, and foresee consequences is

limited.

2.2.2 The Decision-Making Organization Model 0

The basic model of the memoryless decisionmaker with bounded rationality is a two-

stage process illustrated in Figure 3.1.(Boettcher, 1981). Specifically, it is assumed that

the two stages are (a) situation assessment (SA), and (b) response selection (RS). The

decisionmaker recieves an input symbol xi from the environment with average interarrival

time t . The Situation Assessment stage (SA) of the decision process contains algorithms

that process the incoming signals xi to obtain the assessed situation z. It consists of a set

of U algorithms (deterministic or not) that are capable of producing some situation

14
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assessment z of the set Z. The choice of algorithms is achieved through specification of the

internal variable u in accordance with the situation assessment strategy p(u), or p(ulx), if a

decision aid (e.g., a preprocessor) is present. The RS stage contains algorithms that

produce outputs yj of the set Y in response to the situation assessment z and the command

inputs. The selection of the algorithm is made according to the response selection strategy

p(vlz). The two strategies, when taken together, constitute the internal decision strategy of

the decisionmaker. The structure of this model has been extended to include interactions

with other organization members, as well as memory, but the extended model goes beyond

the scope of this thesis. The assumptions under which the model was used in this work are

first that the model is memoryless (memory was investigated by Hall, 1982, and Bejjani,

1985), second, there is no preprocessor (decision aids and preprocessors were studied by

Chyen, 1984).

x u zv •

-f2(x) W z

SA RS

Figure 2.1 Two-Stage Decisionmaking Model

2.2.3 The Task Model

It is assumed that the DM receives signals xi e X from the source with interarrival

time r. These inputs are assumed to take values from a finite set called the input alphabet

and noted X. The cardinal of the set X is noted n. Each element xi of the set X, has a

15
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o

probability pi of being emitted and is assumed to be statistically independent of the other

inputs. Also the set X is exhaustive, that is:
O

SPi = 1 (2.9)

The decisionmaker's task is defined as processing the input symbols xi to produce

output symbols yj of a finite set Y. Such a task implies that the organization designer

knows a priori the set of desired responses Y and, furthermore, has a function or table L(x)

that associates a desired response or a set of desired responses yj, elements of Y, to each

input xiof X. (This implication is used later on in this work to estimate the performance of

the subjects and is therefore of interest.)

2.3 THE BOUNDED RATIONALITY CONSTRAINT

The first chapter of this thesis introduced the assumption that the processing rate of

human decisionmakers is bounded. The concept of bounded rationality constraint has been

studied both in experimental psychology and in the domain of C2.

2.3.1 Experimental Psychology

In the experimental psychology and behavioral analysis literature, one may find two

different approaches which may be related to the concept of human bounded rationality: the

Yerkes-Dodson 'law' and decisionmaking under time pressure. (Casey, 1987 a, c).

Considerable experimental psychological work has examined the influence of arousal

on performance in various types of tasks. Figure 2.2 shows the relationship between

arousal and performance called the Yerkes-Dodson 'law'. This relation is shown when

arousal is varied over an extremely wide range. Arousal is influenced by a variety of

factors including cognitive workload. At very low arousal, performance is low due to

boredom and vigilance limitations. At very high arousal, performance is also low, but it is

then due to stress and sensory overload. In a well designed organization, all

decisionmakers should be operating near the top of the curve. (Casey et al., 1987).

16
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Figure 2.2 : The Yerkes- Dodson Law.

Decisonmaking under time pressure, however, has been given very little attention.
A few studies in the behavioral decision litterature have been made (Ben et al.,1981;

Wright, 1974; Wright et al., 1977). The general conclusion of these works is that when

under time pressure, people process only a portion of the information that they would

normally process. Further, they filter the process so that the information that is processed

is more important than that which is not processed. Such conclusions may have a

significant impact when modeling tasks performed under time pressure. In Chapter V of

this thesis, theses conclusions are used as assumptions when modeling the task of the

experiment which was performed under time pressure.

2.3.2 The C2 Approach

Time pressure is one of the most significant features of decision-making in the

context of tactical battle management, and significant research has been made in the domain
of C2 to study the effect of short action time on the decisionmaking process and on

performance, i.e., Cothier (1984). The concept of bounded rationality in communication

theory will be presented before that of information theory to contrast the two different

approaches.

In communication theory, the concept of channel capacity defines the maximum

transmission between input and output that the particular channel can provide. This

constraint alone is not adequate to describe the limitations of a decisionmaker. Some

decision tasks such as decision processes with binary outcome may require a lot of internal

17
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processing, but very little input-output transmission.

In the information theoretic model, it is assumed that simple information processing

tasks are performed with little error when both the rate of information processing imposed

by the input interarrival rate is low and the decisionmaker is not bored. As the input

interarrival rate increases, the decisionmaker increases his information processing rate. If

the information rate increases further still, a point is reached when the decisionmaker may

not increase their processing rate anymore: the decisionmaker is overloaded and his

performance decreases significantly. The degradation of performance and the

decisionmaker's coping strategies are not statistically predictable and may take many forms.

Exampleb of coping strategies may be ignoring entire inputs, simplifying the algorithms

used to give less accurate responses, etc..(Miller, 1969)

The notion that the rationality of a human decisionmaker is bounded has been

modeled as a constraint on the total activity G (Levis, 1984 ). The specific form for the

constraint for the memoryless and deterministic model has been suggested by the empirical

relation

t = c1 + c2Gt (2.10) 0

where t is the average reaction time, i.e., the time between the arrival of the input and the

generation of an output y, and Gt is the throughput rate computed using the Partition Law

of Information (see equation 2.8). It is assumed that the decisionmaker must process his 0

inputs at a rate that is at least equal to the rate with which inputs arrive. The latter has been

modeled by T, the mean symbol interarrival time:

t = cl + c2Gt < T (2.11)

The modeling assumptions in this work are that

cl/c 2 = Gb + Gn + Ge  (2.12)

and that c2 does not depend on p(x). Then, the bounded rationality constraint takes the

form

18



G=G t +Gb + Gn + GC  I r = Fr (2.13)

where F can be considered as a rate of total activity and is measured in bits per second.

Equation 2.13 may be rewritten using the DM's average processing time t as

..L < F (2.14)
C2

For values of c sufficiently small, noted Tmin, the time t required to process the task with

acceptable accuracy will equal the lapse of time between two inputs, and inequality 2.13

will become an equality described as:

G = Fmaxrmin  (2.15)

where

t per input = min (2.16)

and Fmax is assumed to be the maximum information processing rate, and t the minimum

time required to perform the task with the desired accuracy.

The bounded rationality constraint assumes that if the processing rate Fmax is

exceeded, performance will drop significantly in an unpredictable manner. Equation 2.15

may be rewritten as:

Fmax = (3/ tper input (2.17)

where the different quantities have already been described above.

From equations 2.15 and 2.17, it is apparent that for the purpose of investigating

the behaviour of the bounded rationality constraint, the maximum information processing

rate is a function of three different parameters: the total activity required to perform the task,

noted G, the input signal interarrival time, noted c, and the minimum time required to
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process the information and perform the task with the desired level of accuracy, noted t.

These conclusions have a significant impact when considering the design of experiments
which will be described in the next chapter. •
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CHAPTER MI

EXPERIMENTAL PROCEDURES

The existence and the behaviour of the bounded rationality constraint are tested
and analyzed using experimental results. This chapter describes the experimental setup and

procedures which were designed and run under the direction of Dr. Jeff T. Casey at the
Laboratory for Information and Decision Systems. First, the relevant parameters are

characterized in section 3.1. Then, the experimental procedures are reviewed in section
3.2. Finally, the purpose of the task constraints and experimental setup are explained in

sections 3.3 and 3.4.

3.1 THE PARAMETER TO MANIPULATE

The information processing rate F is described in Chapter 2 as being a mathematical

function of three different parameters, the cognitive workload required to perform the task,
the minimum time required to perform the task for a given level of accuracy, and the input

signal interarrival time. (See equations 2.15 and 2.17). When considering the maximum

processing rate noted Fmax , these three parameters may be reduced to two, since the
assumption is that when Fmax is reached, the input interarrival rate is equal to the minimum

processing rate. As a result, the parameter "time" may be considered as the time allotted to
perform the task, also called the window of opportunity. Therefore, two different

approaches may be used to study Fmax. One may manipulate either the time allotted to

perform the task (t), or the cognitive workload (G) while keeping the other parameter

constant.

The effect of the bounded rationality on performance as a function of workload or

time allotted per trial has been described as a step function (see Figures 3.1 and 3.2).
Performance is stable until the maximum amount of information processing is reached.

Then performance drops at or under chance level. The step function represents an
instantaneous decrease in performance. It is assumed however, that human decisionmakers

will not behave in such a rigid way; when Fmax is reached, performance will decrease

significantly but more smoothly than the step function.
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Figure 3.1 Performance as a Function of Workload

The first approach consists of varying the amount of cognitive workload while

keeping the time allotted to perform the tasks constant. For a given t, the critical cognitive

workload G* associated to Fna x is measured experimentally as the workload after which

performance decreases significantly. The second approach consists of varying the time

allotted to perform the task while keeping the workload constant. The methodology is the

same as for the first case, but instead of using multiple tasks only one task is used and the

time allotted to perform the task is varied. For a given task, the critical time t* associated

with Fmax is measured experimentally. The total activity G, associated with the task is

computed analytically using information theory.
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Figure 3.2 Performance as a Function of Interarrival Time

The manipulation of the task processing time is simpler to monitor and control

under experimental conditions than the manipulation of workload. In particular, time is a
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continuous variable whereas the workload is not continuous and needs to be assessed

analytically. Therefore, the time allotted per trial is the parameter which was varied.

3.2 EXPERIMENTAL PROCEDURE

This work is only the first in a series of experiments, therefore the simplest decision

making organization was simulated: the organization was reduced to a single decision

maker. Since little was known about the experimental study of bounded rationality, the

task was set so that the factors which were affecting the subjects' performance could be

monitored as precisely as possible. The task was also chosen so that the subjects could

become 'well trained experts' with reasonable amount of training, thereby satisfying the

requirement that the decisionmakers' performance did not benefit from the learning effect

during the experiment. The experiment was designed to satisfy both the goals and

constraints which were just mentioned and may therefore seem very basic.

This section first describes the experimental setup, then the manipulation of

parameters, the organization of trials, the practice sessions and finally the subjects are

characterized.

3.2.1 Description of the Setup

The experiment consisted of a highly simplified tactical air defense task. It was run

on a Compaq Deskpro Model 2 equipped with an 8087 math coprocessor, monochrome

graphics card (640 X 200 pixels), 640K of memory, and monochrome monitor. The

experiment was programmed in Turbo Pascal version 3.01A. The operating system was
MS-DOS version 2.11. It was also run on an IBM PC AT with the 80287 math

coprocessor and with 640K of memory. None of the high resolution graphics capabilities

of the AT were used so that the experiment be portable to a wide variety of PC compatible

machines.

The computer screen shown in Figure 3.3 consists of three different parts: A large

circle, a small circle and a rectangular box. The large circle represents a radar screen. The

small circle represents the clock which shows the time allotted for the trial as well as the

amount of time left to perform the task. The rectangular box left of the screen and full of

'domino' shaped rectangles, shows the number of ratios used for the given trial, (4 in this
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example) and the number of ratios still to be processed (2 in this case). The keyboard was

used to enter the subjects' responses.

The experiment consisted of blocks of trials. A trial consisted of either four or

seven threats that were to be processed by the decisionmaker within the allotted time shown

by the clock. Within each block of trials, the number of ratios was constant and the time

allotted per trial was varied in alternating descending and ascending order. Each block of

trials was seperated by a longer pause and flashing to indicate that the number of ratios was

changing.

For each threat two pieces of information were presented as a ratio of two

two-digit integers: relative speed and relative distance from the center of the screen. The

distance was in the numerator and the speed in the denominator. Therefore, each ratio

represented the time it would take the ratio to reach the center of the screen. The subject's

task was to select the ratio which would arrive first at the center of the circle in the absence

of interception. The task can be interpreted as one of selecting the minimum ratio.

0 55

limp 
14

77

19

Figure 3.3 The Screen Display Used in the Experiment

For each trial, only two ratios were identifiable and present on the radar screen at

the same time. The other ratios were shown on the side of the screen by the 'domino'

shaped rectangles. Such a procedure forced the DM's to process ratios in pairs.
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The ratios appeared only on the vertical or horizontal diameter of the radar screen,

and the physical distance of each ratio from the center was proportional to the distance of

the ratio as indicated by the numerator. Thus ratios appeared in one of four regions: left,

right, above, or below the center. Each ratio was randomly assigned to one of these four

regions, subject to the constraint that no two ratios appeared in the same region at the same

time. For each pair of ratios in a given trial, the subject indicated his or her choice by

pressing one of four arrow keys corresponding to the direction of the ratio from the radar

screen's center. The ratio chosen as smallest was retained on the radar screen, the other

vanished, and the next ratio to be processed was taken from the small rectangle's area and

placed on the radar screen. This procedure was repeated until all ratios of the trial had been

examined. Row(s) of small rectangles to the left of the radar screen indicated the total

number of ratios for the current trial and the number yet to be examined (see Figure 3.3).
Each time a new ratio appeared on the radar screen, one of the rectangles turned grey and

the numbers within that rectangle disappeared. The subject could not give a final answer -

until all the ratios had been examined, (three comparisons for four ratios and six for seven).

The arrow keys were located on the numeric keypad of the keyboard and were arranged

isomorphically with the four regions of the radar screen.

Performance feedback was provided at the end of the trial. When a trial was

finished on time, only one ratio remained on the screen at the end of the trial. If this ratio

was in fact the smallest, it "flashed" several times to indicate a correct response. If this

ratio was not the smallest, a low-pitched tone signalled the error. This tone (which subjects

reported to be particularly obnoxious) was used to discourage subjects to use guessing as a

strategy. When a trial was not finished on time, the screen vanished so the subject knew

he had not answered within the allotted time.

3.2.2 Manipulation of Task Interarrival Time

In usual information theoretic setups, it is assumed that the inputs are emitted by

one or many source(s) at a mean symbol interarrival time noted T. In this experiment, to

test the existence of the bounded rationality constraint, the average interarrival time is not

held constant, but is varied. However for easier control of the experimental parameters, the

time allotted to perform the task (noted t) is monitored, not the interarrival time.
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The amount of time allotted for each trial was shown by the fixed clock hand (see
Figure 3.3). A moving second hand (running clockwise from 12 o'clock) indicated

elapsed time within a trial. A 1.5 second pause prior to the start of each trial allowed

subjects to see how much time was allotted. The fixed hand flashed during this interval.

Time allotted per trial was varied in alternating descending and ascending series.

One of the questions which were to be answered by this experiment related to the

stability of Fmax across tasks, if it could be shown that Fmax existed. It was decided to

choose two different numbers of ratios to investigate this issue. Therefore one of the

questions was

SQ(3.1)
t*(4) t*(7)

This issue raised another question: When considering the measurements of time allotted

per trial, should the time allotted per trial be considered or should the average time allotted

per comparison for each trial be considered?

One of the hypotheses was that because of the task setup which only allowed the

subjects to consider two ratios at the same time, the cognitive workload required to process

the four ratios was approximately twice that required to process trials of seven ratios. In

one case three comparisons were requii'ed whereas in the other six comparisons were

required, and it was assumed that the same algorithmic structure was repeated for each

comparison. Equation 3.2 decomposes the workload for one comparison into the internal

variables, whereas equation 3.3 shows it for two comparisons.

k

G1 = H(x 1) + H(wi) + H (yl) (3.2)

k 2k+1 •

G2 = H(x2) + I H(wi) + I H(wi) + H (Y2) (3.3)
i=1 i = k+1

where x1 is the input variable and yl the output variable for one comparison, and x2 is the 0
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input variable and Y2 the output variable for two comparisons, and there are k internal

variables noted wi for each comparison.

Assuming that the workload per comparison was approximately the same for four

and for seven ratios, if it were proved experimentally that the minimum average time

allotted per comparison was not significantly different for four and for seven ratios, then

Fmax for both numbers of ratios should be assumed to be not significantly different.

Therefore, it was decided that the parameter which should be monitored was the average

time allotted per comparison which will be noted T, rather than the time allotted per trial

which was noted t. T may be expressed as a function of the number of comparisons m

within a given trial as follows:

T= t/m = t/n-1 (3.4)

where n is the number of ratios.

To study the variations between trials of three and trials of six comparisons, the

average time per comparison was set to be the same for both types of trials. ( Assuming

Fmax exists, the time threshold associated with Fmax would be derived from the

experimental results, and noted T*3 for three comparisons and T*6 for six.)

The experiment was also constructed to minimize the influence on performance of

time required for non-cognitive (i.e., perceptual and motor) activity. A trial consisted of a

set of either three or six comparisons. For a set of three comparisons, the time allotted per

ioted t, ranged from 2.25 to 10.5 seconds. For a set of six comparisons, t ranged

-14.5 to 21 seconds. Thus the average time per comparison, noted T, was varied from

0.75 to .5 seconds in 0.25 seconds increments for both conditions and 12 different values

of T were recorded. Since even the minimum average time per comparison of 0.75

seconds allowed ample time for eye movements, perception, and motor response, it could

be assumed that the major limiting factor on the performance of the subjects was the

bounded rationality constraint Fmx.

3.2.3 Organization of Trials

The experiment consisted of blocks of twenty four trials within which the number
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of ratios was kept constant. A block of trials consisted of a descending series over the 12

values of t, followed by an ascending series. Such an alternation between ascending and
descending series were aimed at smoothing out the anchoring effect of either only going

from minimum to maximum or only going from maximum to minimum. After a block was

over, the number of ratios was changed for the subsequent block. There was a 2.5 sec.
pause between blocks, during which time, the large rectangle to the left of the radar screen

(see Figure 3.3) flashed to indicate the impending change in number of ratios. The pause
was aimed not only at showing to the subjects what the next number of ratios would be,

but also at allowing to bring the tension down a little.

For each subject, the full experiment consisted of eight blocks of trials for both

numbers of comparisons. The number of comparisons changed at the end of each block.
(It was considered that the small differences between the difficulty of different trials were to

even out when considering blocks of twenty four trials). The subject's response was
recorded and mapped with the expected solution. Immediate feedback showed the subject
whether the answer was correct or not. Such a method satisfied the subject's curiosity

about the accuracy of his previous decision. It also allowed the experimenter to estimate the

subject's overall performance and ability to cope with time pressure.

The goal was to study the subjects' degradation of performance, therefore it was

important to make sure that the range of time intervals for which the subjects were tested
was large enough so that both a stable performance and a degradation of performance could

be observed. The subjects had to be tested both over time intervals that were large enough
so that their performance was close to optimum, and also small enough so that their

performance be below chance level.

By observing the subject run one session of the experiment, it could often be

estimated if the experiment was well calibrated for the particular subject, i.e., if the time
window used to test the subject was well chosen. For some of the subjects the experiment

was run over larger time intervals because preliminary analysis of their data showed that the

time window used was not large enough to gather all the relevant information. Since an

inappropriate experimental setup was not always spotted on time, subjects for whom the

experiment was not run properly were asked to come for extra sessions. As a result, for

some subjects, more data has been collected.
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For the subjects who only came for the scheduled sessions, the total duration of the

experiment was approximately 2.5 hours, divided in three sessions: eight blocks of

twenty-four trials were completed in each session and subjects typically participated in no

more than one session per day. To limit fatigue, each session was seperated into four

ten-minute subsessions between which the subjects could take a brake. This was to allow

them to relax and have good attention span during the short subsessions. Prior to each

experimental session, subjects were given a brief (three to five minute) 'warmup" period

during which no data were recorded.

3.2.4 Practice Session

Subjects received a 30 minute practice session prior to the actual experiment. This

session consisted of six blocks of trials over T for each number of ratios. For the practice

session, T was varied from 1 to 5 sec. per comparison in 0.5 sec. increments. Informal

discussion with subjects indicated that most felt their performance would not improve

substantially with additional practice. Practice was important because the subjects were not

supposed to improve their performance as the experiment was run; the analytical tools

developed by Boettcher et al. assume that the subjects are both well trained and qualified to

perform the task. The practice session was also useful in getting some feedback from the

subjects. A few subjects decided not to go on with the experiment, whereas some were

advised not to participate in the study. The few subjects who were asked not to participate

were people who were not familiar at all with approximation or rounding-off procedures

necessary for such a task. They could not meet one of the requirements necessary to use

information theory when applied to decision making or decisionmaking organizations: well

trained and qualified decsionmakers. Except for those few special cases, the practice data

were not analyzed.

3.2.5 Subjects

Twenty-five subjects ran the experiment to its full extent, since one subject was NL
eliminated from the sample. Almost three quarters of the subjects (nineteen) were present

or former MIT students (both graduates and undergraduates), the others were MIT

employees or students' friends. The large number of MIT students is not inappropriate

since MIT students should be qualified to perform the task and, as mentioned above, the

subjects should satisfy this requirement.
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3.3 PURPOSE OF VARYING THE NUMBER OF RATIOS

It was assumed in section 3.2.2 that the amount of workload per comparison was

approximately the same for trials of four and seven ratios. However, the effect of

manipulating the number of ratios was of some intrinsic interest, because of implications

for how subjects manage their time. Effective time management is more critical for seven

than for four ratios, while "overhead" or "start-up" time is more critical for four ratios than

for seven.

Therefore, if the value of the subjects' threshold (assuming it exists) was not

significantly affected by changes in the number of ratios, it could be established that, to

some degree, the bounded rationality constraint is stable across tasks. If, however,

instability were found for such a minor task change, there would be no need to go further.

Subjects knew before the start of each trial how much time, t, was allocated for the

trial. Part of the subject's task was to budget the available time over the three or six

comparisons so that all comparisons could be completed and full use made of the available

time. The criticality of accurate budgeting can be seen from Equation (3.5).

Response Time = m T' + b (3.5)

where m is the number of comparisons (three or six), T' is the average amount of time the

subject allocates to each comparison, and b is the overhead, startup, or initialization time

for a trial. It is assumed that the value of b is independent of m. According to this model,

the subject must choose T' so that the resulting response time is less than or equal to t.

Clearly, with increasing m, the detrimental effect of setting T' non-optimally increases

relative to the detrimental effect of the fixed overhead, b.

3.4 PURPOSE OF THE TASK CONSTRAINTS •

3.4.1 Constraints on the Experimental Setup

In order to constraint the strategies the subjects could use, two restrictions (already

mentioned in section 3.3) were imposed. First, ratios were displayed in pairs and only one
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pair was identifiable at a time. Second, a final response was permitted only after all of the

four or seven ratios had been displayed. These two procedures forced the subjects to make

a given number of comparisons -three when four ratios and six when seven- or at least

forced them to consider all the ratios. Having a more precise idea of the steps the subjects

went through is an essential tool when computing the workload, since workload is

dependent on the amount of information that the subjects process. Such restrictions also

eliminated the variation in the order of information acquisition which could increase the

workload, if the subjects had been hesitant when deciding which ratios to consider first.

Within the rest of the thesis, since one of the goals is to study the difference

between trials of three tasks and trials of six tasks, a trial will be defined as a set of three or

six tasks, where one task corresponds to finiding the smallest of two ratios.

3.4.2 Instruction to the Subjects

Subjects were instructed to attend only to the numeric information of each ratio even

though the physical distance of each ratio from the center was proportional to its numeric

distance (Casey, 1987 b). This was done to restrict the number of strategies the subjects

would use.

This restriction is important, because Greitzer and Hershman (1984) showed that an

experienced Air Intercept Controller tended to use physical distance information only (and

not speed information) in determining which of a number of incoming ratios to prosecute

first. This simplified strategy was labeled the range strategy. The operator was, however,

able to use both range and speed information -- the threat strategy -- when instructed

explicitly to do so. The threat strategy, if executed in a timely way, is of course more

effective than the simpler range strategy.

3.4.3 Constraints on the Ratios

Another method, which was used to monitor as closely as possible the amount of

work the subjects did, was to impose constraints on the ratios. The ratios were very

carefully chosen to equalize the difficulty of the different comparisons and trials. (Changes

in performance were not to be caused by differences in task difficulty, but because of

overload.)
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For each trial, all ratios were either greater than or less than one. This restriction

was included because pilot work had shown that decisions involving ratios on opposite

sides of one were trivially easy, regardless of interarrival times. The greater-than-one /

less-than-one determination was made randomly for each trial.

Speeds and distances were selected subject to the following constraints:

(1) greater than 10 and less than 98,

(2) no multiples of 10.

(3) Each speed and distance combination was screened and rejected if the resulting

ratio was a whole number,

Additional constraints were that:

(4) no speed value be used more than once per trial;

(5) no distance value be used more than once per trial;

(6) no speed value be the same as its corresponding distance value; and

(7) no two ratios have the same value.

Distances were selected independently of speeds, but had to satisfy constraints six

and seven.

The second round of pilot experiments included these constraints. The subjects,

however, reported that some comparisons were still much easier than others. It appeared

that the ratios less than one could be very difficult to compare because the numerical values

could be very close. To avoid especially difficult comparisons, new constraints were 0

imposed on trials of ratios less than one. For the same reason, the ratios larger than one

were also constrained. As a result, the candidate ratios obtained applying all the constraints

mentioned above were screened against the following new criteria:

(8) each possible pair of ratios within a trial of ratios less than one must differ by

no less than 0.05 and by no more than 0.9 and;

(9) in the greater than one condition, the minimum allowable ratio was 1.2;
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If a candidate ratio failed on any criterion, a new ratio was generated and the
process was repeated until a complete set of four or seven compatible ratios had been

obtained. (An attempt was made to impose the same constraints on both the ratios less than

and larger than one, but when doing so, it was sometimes impossible to generate seven

ratios larger than one satisfying the appropriate constraints.)

3.5 FEEDBACK FROM THE SUBJECTS

Generally, subjects seemed to be challenged by the experiment. Many subjects
reported that the experiment forced them to concentrate hard and that they were glad that

each session was seperated into subsessions between which they could relax. Also, it was

a common feeling that there was a breakpoint after which they could not process the task

within the required time anymore. A few subjects mentioned that they had had a harder

time with trials consisting of ratios larger than one than with ratios less than one. Such a

difference was not built in purposely, but is described and explained in Chapter V: the

algorithms which were used by the subjects resulted in a higher performance for ratios
larger than one than for the ones less than one. Also, some subjects reported having a

difficult time with the keyboard: the response that they had chosen was not always the

response that they entered through the keyboard. (Most of the subjects made at least one

error just because they had just hit the wrong key! ) Such errors will be one of the sources

of noise and discrepancies which are found in the data. Finally, it appeared that there was a

delay between the instant when the key was pushed and the answer was recorded. This

delay was particularly critical for the small values of T, since subjects tended to answer as

late as possible; sometimes their right answer was not recorded.
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CHAPTER IV

THE EXPERIMENTAL RESULTS

In Chapter III, the experimental setup was described. Chapter IV analyzes the

experimental results with respect to the hypotheses that may be tested experimentally.

First, in section 4. 1, the data recorded during the experiment is presented and the

hypotheses are stated. In section 4.2, the methodology used to test the different hypotheses

is described. In section 4.3, the procedures required prior to testing the hypotheses are

presented. In section 4.4, the data is analyzed according to the different procedures and,

in section 4.5, conclusions are drawn from the experimental results.

4.1 THE DATA AND THE HYPOTHESES

4. 1.1 The Data Collected

This section first describes the data recorded in general terms. Then, two examples

are given to explain how to reconstruct the data from the recorded data files.

For each trial, seven different data sets were recorded. (See Table 4. 1) First the

average time allotted per task is shown in column 1. The average time varied between 0.75

sec. to 3.5 sec. for most subjects. The number of ratios for the trial is shown in column 2:

either four or seven ratios, i.e., three or six tasks. In column 3 is noted whether the time

per trial was increasing or decreasing: 1 indicates a descending series whereas 2 indicates

an ascending series. The subjects' performance is recorded in column 4. The subjects

received a score of 0 if an answer was given but it did not match the correct answer, a score

of 2 if no answer was given within the allotted time, and finally a score of I if the answer

matched the correct one. Column 5 lists the two digit distance, followed by the two digit

speed of each ratio in the order they appeared on the radar screen. In column 6 are

inscribed the ratio number that the subject chose at the end of each comparison. Finally in

column 7, the time ( in 10-2 seconds) the subject used to process each task is noted.

As an example of how to read the data files, two rows of Table 4. 1, (noted *I and *2

in the table), are described. The trial recorded in the row, * 1, may be described as follows.

The average time T per task was 3.00 seconds, and there were four ratios, (three tasks), in
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Table 4.1 Sample of the Data Collected: Subject 50, Session 1, First Set of Three Tasks

Col. 1 Col. 2 Col. 3 Coi. 4 Col. 5 Col. 6 Col. 7
Time # of Asc./ Perf. Speed and Distance Result of Elapsed Time

T Ratios Desc. J of the Ratios Comparison to Completion

of Task #

123 1 2 3

3.50 4 1 1 2686316766873891 1 1 1 204 99 127

3.25 4 1 1 7344513949248857 2 2 2 214 308 290 S

•1 3.00 4 1 1 4364185844521563 2 2 4 181 110 165

2.75 4 1 2 5919652537139531 2 3 3 368 247 220

2.50 4 1 1 8297298431424676 2 2 2 241 71 82

2.25 4 1 1 1289368253656283 1 1 1 132 77 55

2.00 4 1 1 4652118619514157 2 2 2 104 104 49

1.75 4 1 2 3764111562971634 1 1 0 373 161 0

1.50 4 1 1 3161179212425881 2 2 2 176 66 38

1.25 4 1 2 5716822144129622 1 0 0 395 0 0
1.00 4 1 2 2769347114634358 1 0 0 296 0 0

0.75 4 1 2 7139763588657537 1 0 0 242 0 0
*2 0.75 4 2 2 6245934837228267 1 1 0 192 11 0

1.00 4 2 2 3192218148724351 1 0 0 302 0 0

1.25 4 2 2 6947743525166452 1 1 0 302 82 0

1.50 4 2 2 7596488753865563 2 2 0 201 230 0

1.75 4 2 1 1452139539692939 2 2 2 182 55 44

2.00 4 2 1 2555146124311798 2 2 4 181 104 151 5

2.25 4 2 1 5369164165752785 2 2 4 307 127 137

2.50 4 2 1 2233269464752959 2 2 2 187 99 105

2.75 4 2 1 4383647834393763 1 1 1 242 131 104

3.00 4 2 0 5691135651926887 1 3 3 126 225 132 0

3.25 4 2 1 9862685588489673 2 2 2 263 121 263

3.50 4 2 1 2779596614213681 1 1 1 159 94 258
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this trial (as indicated by the 4 in column 2). Then, the 1 in column 3, indicates that this

trial is part of the descending series: the T value was larger before this trial. The 1 in

column 4 indicates that at the end of the trial, the subject had correctly chosen the smallest

of the four ratios. From column 5, the value of each ratio for this particular trial may be

read. The four different ratios were:

RI =43/64 R2 =18 /58 R3 =44/52 R4=15/63

From columns 6 and 7, the last information may be derived. Subject # 50 used 1.81

seconds (column 7, first number) to decide which was the smallest ratio of the first task:

The ratio # 2 was chosen, (see column 6, first digit). Then, between the result of the first

task and that of the second, 1.10 seconds had elapsed ( see column 7, second number ),

and the subject had chosen ratio 2, ( see column 6, 2nd digit ). Finally, it took the subject

1.27 seconds to compare the last two ratios ( ratios 2 and 4 ), and enter the final solution,

ratio 4.

The trial recorded in the row, *2, may be described as follows. There were four

ratios, (three tasks), and the average time per task was 0.75 seconds. This trial was

during an ascending series (a 2 in column 3), and the subject did not answer in time,

(indicated by a 2 in column 4). The values of the four ratios were as follows, (see

column 5):

R1 =62/45 R2 =93/48 R3 =37 /22 R4 =82/67

Finally, the subject chose ratio 1 as the smallest of ratios 1 and 2 after 1.92 sec. and

ratio 1 again as the smallest of ratios 1 and 3 after 0. 11 sec. The subject then ran out of

time before entering a final solution.

4.1.2 The Hypotheses

The hypotheses which were to be tested using the experimental results were the

Hypothesis(1): Decisonmakers are subject to the bounded rationality constraint, that is the
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bounded rationality constraint sets an upper limit on the amount of information that

decisionmakers can process before their performance decreases drastically.

Hypothesis(2): If the bounded rationality constraint exists, assuming that the workload
for six tasks is approximately twice that for three tasks, (see section 4.2), is there a

significant difference between the value of the bounded rationality for three tasks and

that for six tasks for each subject?

In Chapter VII, two more hypotheses are tested combining the experimental and

analytical results. The first is designed to confirm that Fmax is stable for each subject as the

number of tasks is varied. The second tests the stability of Fa across subjects.

4.2 THE PROCEDURES TO TEST THE HYPOTHESES

4.2.1 The Existence of the Bounded Rationality Constraint 0

This section first describes the tests necessary to prove the existence of the bounded

rationality constraint. Then, the theoretical model, 'single step ', and the empirical model,

growth curve, are discussed. Finally, the growth curve is characterized. 9

In section 3.1, the theoretical model associated with the existence of the bounded

rationality constraint is described as a 'single step' function. Such a model is not feasible
when considering concrete applications; humans do not behave in such a rigid and 0

structured way, and unwanted noise always distorts experimental results. The empirical
model which will be used to prove the existence of the bounded rationality constraint is a

growth model (described in the next paragraph). The first hypothesis, the existence of the

bounded rationality constraint, may be restated in terms of growth curves as follows:

(1) a growth model fits the data well; .
(2) a growth model will fit the data better than a linear model; "

(3) the existence of a time threshold (which will be noted T*), may be identified and
constructed from the growth curve model. Th: tiireshold corresponds to the corner

point of the step function shown in the theoreti"l model Figure 3.2.

The existence of Fmax will be proved first by showing that the growth curve is a good
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model of the data, (same general characteristics and large R2). The second step will be to

show that a growth curve fits the data better than a straight line, i.e., it is possible to

identify a time threshold (breakpoint) after which performance decreases significantly.

This will be done by showing that R2 , the coefficient of multiple determination, is

consistently larger for a growth curve fit than for a linear fit. (In a third step, the time

threshold T* is evaluated for each subject in section 4.4.3)

The following paragraphs describe the general attributes of the family of growth

curves. These curves are characterized by an S shape: the growth starts slowly

(characterized by a nearly flat curve segment), then the growth increases rapidly (steep

slope) and finally levels off. A growth curve seems most appropriate to describe the

experimental data, since it characterizes patterns where quantities increase from near zero to

close to the maximum level very rapidly.

For the purpose of this experiment, the most appropriate curve of the family of S

curves is the Gompertzt curve which has the characteristic of not being symmetric about the

inflection point. This is a relevant property, since one can not predict that performance will

decrease in a symmetric way after the subject is working beyond the bounded rationality

constraint.

The Gompertz curve has three degrees of freedom and is given by (Martino, 1972):

J(t) = a e -be (4.1)

where J is performance expressed as a value between 0 and 1.

The Gompertz curve may be characterized the following way:

The asymptotes are:

At t=0, J(0)=ae -b (4.2)

Lim J(t)=a (4.3)
t -..400
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The inflection point occurs at:

tinf = In (b) / c (4.4)

and the value of J at the inflection point is:

Jinf= a / e1  (4.5)

For linear regression using the least squares method, the Gompertz function may be

linearized as follows:

Y=AX+B (4.6)

where

Y =Ln (Ln (a/J)) (4.7)

X t (4.8)

A =-c B (4.9)

B = Ln(b) (4.10)

4.2.2 Stability of Fmax Across Similar Tasks

When considering the experimental results, the stability of Fmax may be studied

assuming that the workload for six tasks is approximately twice that for three tasks. (See

section 3.3) Therefore, in this chapter, the stability of Fmax is tested only with respect to

T*, the time threshold (introduced in sections 3.1 and 4.2.1). T* is assessed for each S

subject for both three and six tasks in section 4.5, after the existence of the bounded
rationality constraint has been proved. Then, the distribution over subjects of T* for three

and six tasks is evaluated separately, and the type of each distribution is compared.

Finally, the significance of the difference between the mean of the T* 3 and T*6
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0

distributions are compared using a statistical test, the t test. The hypothesis is validated, if

the statistical tests conclude that the two distributions are of the same type and the means

are not significantly different. (A 0.95 level of confidence is used.)

4.3 THE PROCEDURES PRIOR TO TESTING THE HYPOTHESES

4.3.1 The Data Analyzed

Since the hypotheses focused on the subjects' performance, only the data strictly

related to the subjects' performance: the time alloted per trial, the number of ratios for the

given trial, and the score for the given trial are analyzed. (The rest of the data could

provide basic data for future research. )

When assessing performance, a wrong answer and an incomplete answer were

treated similarily. As a result, for subject i, for each trial k corresponding to the average

time Tj, the score was assumed to be an independant Bernoulli variable with probability

Pij.

I If the tasks were completed within the alloted time
and the correct ratio was chosen.xiik = (4.11l)

0 Otherwise.

An estimate of Pij, was computed as follows using the simple unbiased estimator p

24 O

Pij= I Xijk /No (4.12)
k=1

where No is the number of times the subject was run for each time interval. For most

subjects No is equal to 24.

The estimated performance was plotted against the average time allotted per task for I

Subject #23 in Figure 3.1 and in Figure 4.2 for Subject # 35.
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Figure 4.1 Performance Versus Average Allotted Time: Three Tasks, Subject # 23

Subject # 35, 3 Tasks
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Figure 4.2 Performance Versus Average Allotted Time: Three Tasks, Subject # 35

4.3.2 Data Transformation

Curve fitting will be used to test whether the Gompertz model fits the data well.

Since each Pij is the sum of No independent identically distibuted Bernoulli variables

divided by No , each Pij has a different error variance, and one of the necessary

assumptions for regression and curve fitting, i.e., equal error variances, is violated.

2w
Variance (Pij) = Pij * (1- Pij )INo (4.13)

Therefore, in order to equate the error variances, the estimates Pij were transformed
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using the arcsine formula (see equation 4.14). The denominator (7t/2) is a scaling constant

to keep the range of the estimates between 0 and 1; the variances remain equal. The arcsine S
transformation was used instead of the logit transformation because the logit transformation

is more appropriate for data which is symmetric about an inflection point.

(sin -1 (sqrt( Pij) ) / 1.57 (4.14)

Table 4.2 shows the impact of the arcsine transformation on seven different values

ranging between 0 and 1. (Values 1/4, and 1/7 have been chosen since they are the

performance which would be expected if the subjects were simply guessing for the trials of

three and six tasks respectively.) The general effect of the arcsine transformation is to

slightly increase small values, while slightly decreasing large values. Since it has most

effect on both the lower and upper values, the arcsine transformation will tend to make a

threshold, (if there is any), less visible. The difference between the maximum and _

minimum performances will be reduced as the whole curve is 'squeezed' and flattened.

Table 4.2 The Effect of the Arcsine Transformation

Value Transformed Value

0.0 0.0

1/7 0.247

1/4 0.334

0.4 0.436

0.5 0.500

0.6 0.564

0.8 0.705 0

0.9 0.796

1.0 1.000

All analyses reported herein are based on the transformed estimates which will be 0

called performances.
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4.3.3 The Gompertz Curve Regression

A computer package, RS/1, (Bell Labs) was used to estimate the Gompertz curve
parameters for each data set, and evaluate the fit, the R2 . The program first asked for the

function to use as a curve fit. The Gompertz function was typed in. Then it asked where to
find the x values and the y values; these were stored in a table, the same for all subjects.
The program then wrote the partial derivative of J with respect to a, b and c, and asked for
starting values for a, b and c, as well as a convergeance criterion. The selected starting
value for a was different for each subject since the subjects' maximum performance was

chosen. The same starting values for b and c were entered for every subject, 2 for b and 1
for c. Choosing different starting values in the same range would not have made any 0

significant difference since for each subject the program ran by iteration until the error
converged to 0.0001. When a performance of 0 was encountered the computer
transformed it to a small value, apparently in the range of 0.00001.

4.4 APPLICATION OF PROCEDURES AND RESULTS

4.4.1 General Characteristics of the Data Analyzed

Performance versus the average time allotted per task was plotted for each subject for

both three and six tasks for the transformed data. The curves appeared to have the
following set of characteristics:

(1) They do not have the Yerkes-Dodson concave shape. This indicates that the

experiment succeeded in tapping into the moderate-to-high arousal portion of the
Yerkes-Dodson curve (see Figure 2.2), rather than the "vigilance" portion.

1

(2) Most curves tend to be flat (zero slope) for large values of T.

(3) They have positive slopes for smaller values of T.

(4) Performance drops and tends to level off for small values of T.

Figure 4.3 shows performance versus the average time allotted per task, t, for two

subjects. These curves were selected as being examples of strong, (a), and average, (b), 0
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representation of the threshold hypothesis. (These curves are the same as in Figures 4.1

and 4.2, but with the estimated performance.)

Only half of the subjects have have more than one data point below chance level

because the allotted time could not be decreased indefinitely. It was necessary that poor

performance be caused by mental and not physical limitations. The subject needed enough

Subject # 23 ,3 Tasks
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0 0.6

m 0.4
a0.2/

n 01
c 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Interarrival Time (sec)

(a)

Subject # 35, 3 Tasks 0
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(b)

Fig.4.3 Transformed Performance versus Average Allotted Time per Task for Two •

Subjects.
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time to press a key. One subject was eliminated from the sample, because the experiment

was not run properly (inappropriate time window) and the subject was not available for

further testing. As a result the population sample was reduced to twenty-five subjects.

The characteristics of the curves describing subjects' performance as a function of

average time allotted per task, suggest that a Gompertz curve could be appropriate for

summarizing the data.

4.4.2 The Existence of Fmri: the Gompertz Fit

The three parameters a, b, and c of the Gompertz curve were derived for each subject

for trials of both three and six tasks and are shown in Appendix A. The parameter 'a'

ranged from 0.42 to 0.83, the parameter 'b' ranged from 1.61 to 222.78, and 'c' ranged

from 0.77 t o 7.15. The distribution of the values for parameter 'b' was not uniform: for
trials of three tasks, 23 of the 'b' values were less than 25.00 whereas for trials of six

tasks, there were 22 'b' values less than 25.00. The large values taken by the parameter

'b' for some of the subjects was due to the following reasons. First, performance J, is not
very sensitive to changes in b. Second, a very small convergence criterion was used in the

regression. Finally, by combining equations 4.2 and 4.3, b may be expressed as the
logarithm of the ratio of the performance at T equal zero, to the performance as T tends to

infinity. Therefore, if the subject's performance for very small T values is 0 or close to 0,

b w'll be very large. In the five cases when the parameter 'b' was exceptionally large, for
the lowest T values, the subjetcs' performance was very close to 0.

In every case the Gompertz fit was good: the min R2 was 0.93, and a check of the

residuals showed no consistent pattern which could indicate that the Gompertz was not an

appropriate model. Also, in every case, the Gompertz fit was at least as good and almost

always significantly better than a straight line fit. (See Appendix B). R2 ranged from 0.93

to 0.99 for the growth curve, whereas for the linear regression, R2 varied from 0.45 to

0.93. A one sided statistical t test was made to verify that the R2 for the Gompertz fit were

significantly larger than that for the linear fit. The t value obtained was 23.7. It is much
larger than the maximum t* value which would confirm that the two distributions are not

significantly different. (t*0.95,24=1.078 for a one sided test with a 0.95 level of confidence

and 24 degrees of freedom.). In section 4.4.1, the characteristics of the data were

described as being similar to the characteristics of the Gompertz curves. These
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observations, combined with the large R2 values for every subject indicate that the

Gompertz curves are a good description of the data. The t test confirms the Gompertz'

good fit as well as the existence of a time threshold T* (which will be evaluated in section

4.4.2): The bounded rationality constraint exists.

Figure 4.4 show the Gompertz fit superimposed on the observed data. The subjects

and the number of ratios are the same than the ones used for Figure 4.3 a-b.

P Subj. 23, 3 T. .0-S curve
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Interarrival Time (sec) 0

(a)

P Subj.35,3T. -0- S Curve I
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r
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(b)

Figure 4.4 The Gomperzt Fit for Two Subjects
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4.4.3 Evaluation of T*

The existence of Fmax was proved for every subject. Before testing the stability of
Fmax , procedures to evaluate T* are needed. This section describes how T* may be

found both analytically and graphically.

In order to stay as close as possible to the theoretical model, (the comer point of the
'single step' function), T* was defined as the point at the intersection of the following

tangent lines: the asymptotic performance (the parameter 'a' of the Gompertz curve), and
the slope at the inflection point of the Gompertz curve. (See Figure 4.5). The first line

forces performance to be at maximum, whereas the other is a good approximation of the
speed at which the subject reaches maximum performance as T increases. Had the slope

between the maximum and minimum asymptotes been constant, that slope would have been

chosen. Figure 4.5 shows the tangent lines and resulting T* value for the same S curve as

shown in Figure 4.4 a.

1 -- Scurve -0- Tangent -1r- Tangent
P
r 0.8 --

0
r

m 0.4

a
n

e 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
I Interarrival Time (sec)
T*

Fig.4.5 Construction of T* using Tangents

Analytically, T* may be also found as the intersection of the two lines:

{J =a
J =a T*+p (4.15)

where a is the asymptote of the Gompertz fit.
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Therefore:

T* =(a - 3) / a (4.16)

where a is the slope at inflection point and is intercept of the tangent at the inflexion

point.

Since, (See equations 4.4-4.5)

cc = a c / el , and Jinflexion = a / e l , and Tinflexion = ln(b) / c,

then,

Jinflexion = a Tinflexion + (4.17)

3=a (1-ln(b))/e 1  (4.18)

Substituting ac and 13 in equation 4.16 we obtain the folowing expression for T*

T* =[ eI -1 + In (b) ]/c (4.19)

where b and c are two of the three parameters of the Gompertz curve.

It is interesting to notice that the asymptote of the Gompertz curve, the parameter a, is

not present in the equation. The sensitivity of T* with respect to a is nonetheless larger

than that with respect ot b or c, since a is related to T* through b and c by the Gompertz

model. ( Further computations have shown, as expected, that T* is more sensitive to a

than it is to b or c.)

4.4.4 The Stability of Fmax Across Similar Tasks: T*3 versus T*6

For each subject i T*i was computed for both 3 and 6 tasks and noted Ti* 3 and

Ti*6. The obtained T* values are shown in Appendix C and summarized in Table 4.3.

Both the mean value and the standard deviations were very similar for three and six tasks:

2.079 sec. versus 2.069 sec. for the mean and 0.651 sec. versus 0.579 sec. for the
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standard deviation.

Table 4.3 Summary of T* Values (sec.) for Three and Six Tasks

Mean Std. dev Min. Max.

Three Tasks 2.079 0.65 1 0.911 4.046

Six Tasks 2.069 0.579 1.080 3.504

Generally, the subjects had T* values for three and six tasks that were very close. A

little over half of the subjects, thirteen out of the twenty-five, had a larger T* for three tasks

than for six tasks. Also, since the mean of T* over subjects were very close for three and

six tasks, only a 0.01 difference), one was tempted to conclude that there was no

systematic difference in the T*'s as a function of the number of ratios. To confirm such a

hypothesis, a few tests had to be performed. First, one had to check that the two

distributions were of the same type, and then, that their mean was not significantly

different.

The slightly larger standard deviation of the T3 *distribution was mostly due to one

significantly larger T3 * value: 4.046 sec. The subject who had a high T3 * was not

performing especially worse for three than for six tasks but the performance was increasing

more irregularly. He had complained about the setting of the experiment, and reported

entering several times the wrong answer because of inadvertently pressing the wrong key.

A plot of the distribution of the T*'s for three tasks (Figure 4.6) and for six tasks

(Figure 4.7) leads to the hypothesis that the two distributions are normal.

It is interesting to note that in the case of three tasks, most of the difference between

the T* distribution and the normal distribution is due to the fact that the distribution of the

T s is extremely peaked. In the case of six tasks, the difference is caused both by the

smaller T* values as well as by the peak around the mean. The Chi-Square test consists of

evaluating the difference ( noted Q2 ) between the distribution under study and ( in this
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Figure 4.7 Distribution of the T* Values for Six Tasks

case ),the normal distribution; Q2 is computed as follows:

5
Q2 ~ Observed1 - Expected1 )2 / Expectedi (4.20)
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The Q2 values were 5.6 for three tasks and 4.4 for six tasks which were both smaller

than the critical value: X2 ,0.95,3 = 5.99. Thus, it could be concluded that the two

distributions were both not significantly different from a normal distribution, and were of

the same type. (A detailed description of the results of the Chi square tests is given in

Appendix D).

The next step was to compare the mean value of the T* distribution for three and for

six tasks. A statistical test, the t test, was run. (The test performed is the t test used when

comparing two dependent samples. See Appendix D.) The t value obtained was 0.09

(t = 0.09 < t' 23,.9 5 = 1.74 ) which confirms the hypothesis that the two distributions

were not significantly different.

Therefore, it may be concluded that T* is robust to minor task changes, and

assuming that the workload for six tasks is approximately twice that for three tasks, the

same may be postulated for Fm x. As a result, each subject i was assigned a single value

Ti* which was equal to the average of Ti* 3 and Ti* 6. The frequency distribution of the

individual Ti*'s was plotted. (See Figure 4.8). This distribution is unimodal, very peaked,

and has mean 2.074 sec. and standard deviation 0.549 sec.

M Observed - Normal
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e

q 8
u 6
e 4
n 2

y 0
< 1.25 1.26 to 1.79 to 2.36 to > 2.91

1.78 2.35 2.90
Time Interval (sec)

Fig. 4.8 Distribution of the Average Ti* Values. •

The distribution of the Ti*'s for three and that for six tasks was shown to be normal.

Such was also the case for the individual T* values -- A X2 test for goodness of fit revealed

non-significant deviation from normality: Q2 = 4.4 < X2(.95,2) = 5.99.
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The fact that the T* distribution is normally distributed is of interest since one may

postulate that F.. for each subject will also be normally distributed. If this postulation is S

confirmed in Chapter VII by the analytical results, then the hypothesis that Fmax is stable

across subjects will be validated.

4.5 CONCLUSIONS

The existence of the bounded rationality constraint, Fmax, has been proved by the

experimental results. T*, the time threshold associated with the bounded rationality

constraint, has been evaluated for each subject and both numbers of tasks. It was shown

that the T* value for three and six tasks were not significantly different. Therefore, under

the assumptior that the workload for six tasks is approximately twice that for three tasks,

one may conclude that Fmax is stable when minor task changes are made. Finally, a T*

value was estimated for each subject. The distribution of the individual T*'s was normal.

Such a result enables the postulation that Fmax is stable across subjects.

The stability of Fmax both across similar tasks, and across subjects will be confirmed

in Chapter VI1 when both the experimental and analytical results are combined. First,

however, models of the algorithms used by the subjects are presented in Chapter V. Then,

in Chapter VI, the workload associated with these algorithms is evaluated.

S
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CHAPTER V

THE DECISIONMAKING MODEL: THE SUBJECTS' VIEWPOINT

5.1 GENERAL PURPOSE

The goal of this thesis is to study the bounded rationality constraint Fmax. Such a

study requires both experimental and analytical results. In Chapter IV, the experimental

results were described: the existence of Fmax was proved, T* was evaluated for each

subject, and postulations were made about the stability of Fmax across tasks. The next goal

of this thesis is to present the analytical results, (the computation of workload), and

confirm the assumptions raised in Chapter IV concerning the stability of Fmax. To

compute the workload associated with the task, the subjects' mental process must be

modeled and then transformed into information-theoretic algorithms. This chapter presents

basic models of the subjects' mental process.

A mathematical model attempting to describe the subjects' mental process would be of

little significance if it was not validated. Therefore, it seemed appropriate to evaluate the

appropriateness of these models. After running the experiment, the subjects were asked to

describe the algorithm(s) that they had used while running the experiment; these results are

described in section 5.2. The major dififculties encountered when modeling the tasks are

described in section 5.3. Then, simple mathematical models which took into account the
algorithms described by the subjects were developed and are presented in section 5.4. .

Each subject was assigned to a particular algorithm. Before analyzing these models and

computing the workload associated with each (Chapter VI), the appropriateness of the
algorithms is evaluated in section 5.5. The performance of the models is compared to that

of the subjects. •

5.2 SUBJECTS' STATEMENTS

5.2.1 Correspondence with Cognitive Science

From reading the subjects' description of the algorithms used, as well as their general

comments about the experiment, it appeared that the subjects felt under time pressure, and

that they had been using coping strategies to perform the task. The task was to compare

53

W%0
'J~ %



"N

ratios and find which was the smallest. To ensure 100% performance, a computer program

would have processed the task by computing the value of each ratio and then comparing the

obtained values. It appeared that the subjects often only processed a portion of the input

information that they would normally process, if they had more time or aids (even pen and

pencil) to perform the task. Subjects used shortcuts and filtering methods that allowed them

to processes the most significant information. An example of such behavior were subjects -

who systematically ignored the second digits of the two digit values of speed and distance.

Such an observation is similar to the conclusions drawn from the few studies of time

pressure found in behavioral decision literature. (Wright, 1974)

5.2.2 Retrieving Descriptions of the Model(s) Used

As it was mentioned in the previous section, the subjects were asked to describe the

algorithm that they had used to perform the task. Before the subjects' statements were

studied, different models that would be plausible descriptions of the algorithms were

designed. These models were used as guidelines when the descriptions were too vague.

The first task was to translate the subjects' description into a mathematical model.

Whereas some subjects seemed able to analyze very clearly the basic mental processes that

they have used, others seemed unable to do so. Phrases like 'When the comparison is not

obvious...' appeared more often than expeced. A study of the rest of the description often

gave some idea of the algorithm (or at least the algorithmic structure) used. Here are a few

extracts of some of the subjects' answers:

Extract A:
Step 1: Observe left hand column of multi digit fractions

Step 2: Try to look for 8's or 9's in the second column

Step 3: When digits on the left are the same, decide based on second column digits

Extract B:

For ratios <1 compare numerators if the ratios comparable, otherwise obvious

For ratios >1 if comparable try and reduce otherwise want smaller numerator, greater

denominator.

The models were aggregated into a few categories which are discussed in section 5.4.
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Translating the subjects' description required a subjective methodology where both

intuition and 'common sense' played a very important role. Such modeling methods

required an evaluation of each algorithm using some test of appropriateness or some other

evaluation method. Such a test, which was alluded to in the first section of this chapter, is

described in detail, in section 5.5.

5.2.3 The Stages of the Decision Process

In Chapter II, the decision-making model was described as a two stage process. The

first stage, the Situation Assessment stage, allowed the decisionmaker to analyze and

assess the situation before making a decision in the response selection stage. At each stage,0

the subject could choose from a set of algorithms to process the information.

When running the experiment, the subjects seemed to be using only one situation

assessment algorithm. The algorithm consisted of looking at the clock and understanding

how much time they had to compare the ratios, understanding how many ratios would have

to be processed, and finally just looking at the value of the ratios present on the screen. The j

subjects did not mention these first steps which are the obvious steps that one would follow

when faced with such a task.

The response selection algortithm varied from subject to subject. It appeared,

however, that most subjects used the same algorithm, whatever the input ratios were. The

main factor which seemed to induce a change in algorithms was the time allotted to perform

the task. When they could not process the task using the strategy they were most

comfortable with or their 'optimum strategy', subjects often switched either to a simpler

version of the same algorithmic structure, or to a different structure. The subjects were

instructed not to guess unless it was an educated guess, but subjects sometimes just picked

one of the two ratios randomly, often hoping that the next comparison would be easier.

Changes in strategies due to increase in time pressure were very difficult to monitor since

most subjects were not even aware of the change, or if they were, did not report it.

As a result, the models that were derived for each subject, encompass both the

Situation Assessment and the Response Selection Stages, but do not take into account the

subjects' relationship with the clock. For this particular experiment, the two stage decision

model of the single decisionmaker shown in Figure 2.1 may be simplified as in shown in
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Figure 5. 1.

f(x) h2(Z) y

V

SA RS

Figure 5.1. The Simplified Decision-Making Model

5.2.4 The Issues of Pure and Mixed Strategies

In the case of this experiment, when considering the type of strategies used by the
subjects, the notions of pure and mixed strategies as described by the literature seem

difficult to apply. (Boettcher, 1981).

Pure and mixed strategies are defined as follows. In the case of the situation 0
assessment stage, a decisionmaker without a preprocessor uses a pure strategy if whatever
the input, he uses a given algorithm to process that input with probability one, (he always
uses the same situation assessment algorithm). In the case of the RS stage, the notion is
very similar. For each input identified by the situation assessment stage, there is only one
response selection algorithm that the DM will use to provide a response. This may be

expressed mathematically as follows:

p( v =j I z =z i ) =1 (5.1)
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where j is the algorithm selected in the response selection

zi is the output of the situation assessment algorithm.

In the experiment, it was very difficult to evaluate which strategy or algorithm(s) the

subjects were using. It was even more so when trying to identify which subject changed

algorithm when. Because of the experimental setup, as explained in the previous section,

(5.2.3), there was only one situation assessment algorithm, thereby there could only be a

pure strategy. For the response selection stage, the setup did not force the subjects to use

any particular algorithm. From talking to the subjects and reading their comments, it

appeared that the subjects used a single strategy whatever the input was. It is only when

they felt too pressured that they switched from their 'usual' strategy to a simpler one.

Therefore, since the change of strategies was based on one of the input characteristics, (the

time available to process the trial), they were using a set of pure strategies for the response
Qelection stage.

5.3 MODELING DIFFICULTIES

5.3.1 Requirements of Information Theory

As described in Chapter 11, information theory is a mathematical tool which may be

used to compute the cognitive workload associated with a given task. Information theory

imposes constraints and requirements on the type of tasks that may be modeled as well as

on the algorithms that may be used. These conditions restrict the type of tasks that may be

simulated.

One of the major constraints is that the tasks be well defined so that they can be

modeled using mathematical variables, or at least variables for which a probability

distribution may be derived. As a result, the quantities and parameters which are used must

be measurable values, and belong to a finite set.

The other conditions which must be fulfilled are that the decisionmakers be well V
trained and motivated and that they operate at a level where the bounded rationality is not in

effect. The last condition concerning the bounded rationality constraint is particularly

inmportant to this section of the research and has serious implications when considering the

algorithms that will be modeled to compute the cognitive workload. It has been metioned
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that subjects have been switching from one algorithm to an other as the time allotted per

trial was decreased. When subjects felt overloaded, or close to being overloaded, many

switched to an algorithm for which the cognitive workload was less; these algorithms were

called coping algorithms. As a result, when modeling the task and assessing the workload,

it will be very important to model the algorithm that subjects used when they did not feel

under serious pressure yet, i.e., the algorithm that they used when they have the most time

available.

The growth curves which were used to model the experimental datw. smoothed out any

change in strategy. Therefore, T* may be considered as an average over several 'T', each

'T*' associated with an algorithm requiring less cognitive workload: a coping strategy.

Since the individual 'T*'s were not identifiable, the T* value (see equation 4.19) was

retained. It may also be postulated, that the slope at which performance decreases, (more

specifically the slope at the inflection point), reflects the number of different coping

algorithms used by the subject as the time available to perform the task decreased: the larger

the number of different algorithms used, the smaller the slope, and consequently, the

smaller the T* value.

5.3.2 The Limitaticn of the Mathematical Models

Information theory restricts the type of algorithms that may be used as well as the

experimental setups. One of the major problems in trying to assess the mental workload is

also derived from the difficulty or better the incapacity to include non-quantitative measures

in the mathematical models. How may one model a subject's mental process when the

subject describes choosing one ratio over another because 'the comparison was obvious',

or how can one describe the fact that another subject will just assume that 2/5 is less than

3/7 ? In both cases, the subject knows (or thinks he knows) the answer and uses some

cognitive process to make a decision. No previous research has been done to evaluate and

compute using information theory the cognitive workload associated with intuition. The

impact of memory on workload has been discussed in the literature (Hall, 1982, Bejjani,

1985). In this research, for simplicity, it is assumed that the decisionmakers are

memoryless with respect to short term memory. Also, with respect to long term memory,

the only cognitive work which is assessed when choosing the smallest of two single digit

ratios is due to the distribution of each ratio. The cognitive work required to retrieve the

information from permanent memory is ignored but could be the subject of future research.
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5.4 THE RESULTING MODELS

5.4.1 Thbe Different Mental Approaches

When considering all the constraints imposed by the analytical tools as well as by the

nature of the task, the number of different approaches was quite small. It appeared that

there were only three different basic types of mental processes. Whereas some features

were common to all three types, the most important processing in each case was quite

different. The three different methods were the following:

Method 1. For each ratio, approximate the speed and distance with single digit
values, then compare the resulting ratio.

Method 2. Approximate the ratio (or its inverse) to its nearest integer and compare.

Method 3. Compare the differences between numerators and denominators.

Whereas for the first two methods the first steps could be done independently for

each ratio, the last approach included both ratios as soon as some processing was done.

Each method resulted in one, two or three different algorithms to include some of the

variability among subjects. The resulting set of models consisted of six different

algorithms that will be described in detail in the next section. Finally, before performing

any computation or approximation, it appeared that the subjects checked for any

significantly small ratio. If such a ratio was spotted, they ignored the other ratios and

would give the 'small ratio' as the solution. Such a procedure was even more widely

spread when the time allotted per comparison was small. For small processing times, the

notion of a small ratio was often less strict, and included ratios that would not have been

considered if the clock had shown more time available.

5.4.2 The Six Algorithms: Description of the Models.

Models derived from method I

The first approach (method I described above), which consisted of approximating the

last digit of both speed and distance, was used by four subjects. Two different algorithms

resulted from this approach. The first approximation method, (named Algorithm 1), was to

simply truncate the last digit of both speed and distance values when performing the
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comparison. The second method, (named Algorithm 2), is to truncate first the last digit of

the speed and distance values as for Algorithm 1, and then add to the truncated values 0 if

the second digit is less than 5 and 1 if the second digit is larger than 5. Once the ratio values

have been approximated, the subject has to compare the two resulting ratios. If the two are

not equal, the solution is the smallest ratio. If the two are equal, the subject randomly picks

one of the two as a solution. Given two input ratios RI and R2 such that

Rl=dl/vl and R2=d2/v2,

one comparison for Algorithm 1 is described in Figure 5.2, whereas one comparison for

Algorithm 2 is described in Figure 5.3.

d[1]=trunc[dl/10] d[2]=trunc[d2/10]

v[1]=trunc[vl/10] v[2]=trunc[v2/10]

d[1]/v[1] < > d[2]/v[2]

S1= R p (SI=R1) =0.5 S1 R2
p (Sl=R2) = 0.5

Figure 5.2 One Comparison Using Algorithm 1 S

d[l]=round[dl/10] d[2]--round[d2/10]
v[1]--round[vl/101 v[2]=round[v2/10] 0

[I ]/[1<> []v2

Sl=R1 p (S1=R) = 0.5 S1= R2
p (SI =R2) = 0.5

S

Figure 5.3 One Comparison Using Algorithm 2
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Models derived from method 2

Only one algorithm was derived from method 2. This model had the disadvantage of

being different for ratios that were less than one and for ratios that were larger than one.

For ratios that were larger than one, each ratio was rounded to its nearest integer. Then, if

the absolute difference between the nearest integer and the ratio was more than 0.25, the

integer value was corrected by positive 0.25 or by negative 0.25, as appropriate. Then the

resulting values for both ratios were compared. As for algorithms 1 and 2, if the values

were the same, it was assumed that the subjects picked randomly one of the two ratios for

the solution. For ratios less than one, the inverse of the ratio is first taken. Then, the same

process as for ratios larger than one is used. The resulting algorithm was called Algorithm

3 and the process for one comparison is shown in Figure 5.4 for ratios larger than one and

in Figure 5.5 for ratios less than one. Considering the two ratios RI and R2 already

defined for algorithm 1 and 2, Algorithm 3 is described for ratios larger than one in Figure

5.4 and for ratios less than one in Figure 5.5.

Ratios > 1 i = 1, 2

rat[i] = round[di/vi]

if [ rat[i] - (di / vi)] > 0.25 then ratio[i] = rat[i] - 0.25

if [ rat[i] + (di / vi) ] > 0.25 then ratio[i] = rat[i] + 0.25

ratio[ I ] <'> ratio[2]

Sl =R1 p (SI=Rl) =0.5 Sl =R2 S
p (SI=R2) = 0.5

Figure 5.4 One Comparison Using Algorithm 3 for Ratios Larger than One A

Models derived from method 3

Three algorithms were derived from method 3 which consisted of zomparing the

differences between the numerators and denominators ( distances and speeds) of the two _
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Ratios < I i = 1, 2
S

rat[i] = round[vi/di]

if ( I/rat[i] ) - (di / vi) > 0.25 then ratio[i] = rat[i] - 0.25

if ( 1/ rat[i] ) + (di / vi) > 0.25 then ratio[i] = rat[i] + 0.25

ratio[l] <*>ratio[2]

S1 = R2 p (SI=Rl) = 0.5 S1 =R1
p (S 1=R2) = 0.5

Figure 5.5 One Comparison Using Algorithm 3 for Ratios Less than One

ratios that had to be compared. For Algorithm 4 and Algorithm 5, the difference between

the distance and the speed of each ratio was computed, then, the ratio with the smallest

difference was chosen. For Algorithm 4, the subject could come to a conclusion if the

difference was larger than 10. For Algorithm 5, the subject came to a conclusion if the

difference between the speeds was larger than that between the distances or vice versa. The

two algorithms are described below in Figures 5.6 and 5.7.

d2 -v2 +10 ,' d,-v 1

S= R2 p (SI=Rl) = 0.5
p (Sl=R2) = 0.5

Figure 5.6 One Comparison Using Algorithm 4 0
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dl -VI < >d 2

S1 =R1 p (Sl=R) =O.5 S1R
p (S I=R2) = 0.5

Figure 5.7 One Comparison Using Algorithm 5

The last model, Algorithm 6 is a combination of Algorithm 2 and method 3. The

subject first checks if there is not one ratio which has a smaller distance and a larger speed

than the other. If he can not make a decision by these criteria, the subject uses the

approximation method of Algorithm 2. Algorithm 6 is described in Figure 5.8.

S1 R1d 2 <d1 and v2 >v,

NoYe

dj~l]=round(di/1O) Si R2
d[2]--round(d2/10)
v[1]-round(vl /10)
v[1-2-round(v2 /10)

d[1]/v[l] <*> d[2]/v[2]

S1 =R1 p (SlI=R2) =0.5 S1 =R2 v
p (S1=Rl) = 0.5

Figure 5.8 One Comparison Using Algorithm 6
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5.5 EVALUATING THE MODELS

5.5.1 Purpose of the Evaluation

The different models used by the subjects have just been described. However, before

assuming that these models are a reasonable representation of the subjects' mental

processes, the appropriateness of these models must be validated. To do so, the maximum

performance of each subject will be compared to the estimated performance of the algorithm

associated with each subject.

5.5.2 Defining the Maximum Performance

Each subject's maximum performance was established from the experimental results

using the S curves. For subject i, the maximum performance is noted ai3 for three tasks

and ai6 for six tasks, and may be derived as follows:

forj = 3 and6

ai j=lim (Jij(T)) (5.2)
T--oo

Each of the six algorithms described in section 5.4 represents a pure strategy and is

noted fk, with k taking values ranging from I to 6. For a given algorithm fk, the estimated

performance will be noted Jk3 for three tasks and Jk6 for six tasks.

The performance that would result from accurately using these algorithms has been

estimated by simulating the experiment 300 times on an IBM PC. Each algorithm was

programmed in Pascal, and the function "random" was used to generate sets of ratios

satisfying the requirements of the experiment, the same way the experiment had been set

up. But since whether the sets of ratios were less or larger than one depended on another

random function, it seemed important to simulate the experiment for both ratios (larger than

and less than one) for the same number of times.

Such a procedure gave particularly relevant information concerning the difficulty of

the experiment. Some subjects had mentioned that they found the ratios larger than one
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more dificult to compare than the ratios less than one. This observation was confirmed by
the simulation of the algorithms: the algorithms always performed significantly better for

the ratios less than one. Since the trials were independent identically distributed Bernoulli

variables, the estimated performance Jkj could be computed as follows:

Jkj (Jkj<1 + Jkj> 1) / 2  (5.3)

where:

150

Jkj<l = xi<l / 150 (5.4)

150

Jkj>l = xi> 1 / 150 (5.5)i--1

However, since each subject's performance curve had been transformed using the

arcsine transformation to perform the regression analysis, it was necessary to make the
same transformation on the algorithms' expected performance to have values that could be

compared. Therefore, an arcsine transformation was made on the algorithms' simulated
performance. Table 5.1 shows the (transformed) estimated performance for each of the

algorithms for three tasks and the non transformed performance both for ratios less than

one and ratios larger than one. Table 5.2 shows the same results for six tasks.

The results are only estimates of the population's true mean. The variance for each

estimated performance was very low. It varied between 0.0005 to 0.005. (The sample size ,,-

was 300 of a population of possible combinations of ratios close to 1013.)

The algorithms' estimated performance values were larger for trials of ratios less than

one than for trials of ratios larger than one. The difference may be explained by the

constraints imposed on the trials. For trials of ratios less than one, the values of the ratios

were constrained so that the difference between any two ratios be at least 0.05. The same

constraint was not imposed on trials of ratios larger than one for practical reasons: when
running trials of six tasks, the program often could not generate ratios satisfying the
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constraints. Instead, the ratios larger than one were constrained to be larger than 1.2. As a
result, the ratios larger than one were on average slightly harder than the ones less than

one.

Table 5.1 Estimated Performance for the Six Algortihms for Three Trials

Algorithm Estimated Performance (Three Trials)

number Ratios < 1 Ratios >1 Overall Perf. Overall Perf.

untransf. untransf. untransf. arcsine transf.
S

AI. 1 0.84 0.625 0.733 0.654
A1.2 0.86 0.645 0.753 0.665

A.3 0.91 0.724 0.817 0.719
AI.4 0.744 0.437 0.591 0.558

A1.5 0.757 0.628 0.693 0.627

A1.6 0.86 0.705 0.783 0.692

Table 5.2 Estimated Performance for the Six Algorithms for Six Trials

Algorithm Estimated Performance (Six Trials)

number Ratios < 1 Ratios >1 Overall Perf. Overall Perf.

untransf. untransf. untransf. arcsine transf.

Al.1 0.645 0.538 0.592 0.559

A1.2 0.657 0.584 0.621 0.580

A.3 0.774 0.427 0.601 0.564

AI.4 0.608 0.349 0.479 0.486
A1.5 0.632 0.462 0.547 0.530
Al.6 0.832 0.591 0.711 0.639

Figure 5.9 shows the estimated performance of each algorithm for both three and six

tasks. The algorithms perform better for thiee than for six tasks, but the ordering of the
algorithms' performance stays almost unchanged. ( Algorithm 3 which performed the best
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for three tasks, is only third to best for six tasks. The others have remained unchanged).

The average difference between performance for three tasks and performance for six tasks
is a 0.1 decrease. Finally, Figure 5.9 also shows that the difference in performance

among the algorithms is not very large. For three tasks, there is only a 0. 16 differenct'

between the best and the worst algorithm, the difference is 0.15 for six tasks. However,

considering the small variances of the algorithms' estimated performance (in the range of
10-3), the differences should not be considered as negligible.

HAlg., 3 Tasks 0 Alg., 6 Tasks

e 1
r 0.8
f
0 0.6 - o 0 or 0
M 0.4

a0.2
n
c 0 III

e 1 2 3 4 5 6
Algorithm #

Figure 5.9 The Algorithms' Performances: Three Tasks versus Six Tasks

5.5.3 Comparing Performance: Simulations versus the Experiments 0

The six algorithms described in section 5.4 were derived from the subjects'

descriptions. Each subject was then assigned to the algorithm which was closer to the

description he gave. The next step was to estimate the algorithms' maximum performance.

The goal of this section is to evaluate the appropriatness of the algorithms.

Table 5.3 showF, for three tasks, the number of subjects who were using each

algorithm, the average performance over the subjects and, finally, the algorithm's

performance (The subject's performance which was averaged was the asymptotic . .

performance, the 'a' values of the Gompertz fit, see equation 5.2). Table 5.4 shows the

results for six tasks. The detailed table, showing each subject's optimum performance
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Table 5.3 Three Tasks: Subjects' Performance Versus the Algorithms'

Algorithm Number of Subjects Average Perf. Algorithm' s Estimated

#Using it Over the Subjects Perf.

1 2 0.573 0.654

2 3 0.590 0.665

3 6 0.715 0.719
4 3 0.555 0.558

5 4 0.655 0.627

6 7 0.682 0.692

for both three and six tasks, as well as the algorithms' performance is shown in Appendix

E. The difference between the algorithms' and the subjects' performance was within a

close range for three tasks; this is shown explicitly in Figure 5. 10.

Alg., 3 Tasks 0 Subj., 3 Tasks

e I1
0.8 -

0.4

a0.2
n
c 01II
e 1 2 3 4 5 6

Algorithm #

Figure 5.10 The Subjects' Performance Versus the Algorithms': Three Tasks

Three subjects performed significantly better than the algorithms that they seemed to

have been using. These subjects were in the School of Engineering and had had very high

scores on the --AT's and the GRE's. They seemed very familiar with approximation

methods, therefore one may hypothesize that when the algorithms they were using could
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not give a significant conlusion, they made educated guesses.
S

For six tasks, Table 5.4 suggests that, on average, the subjects were performing

better than the algorithms which were modeled. Since not a single subject mentioned

using a different algorithm for three than for six tasks, the algorithms were considered to

be satisfactory models.

Table 5.4 Six Tasks: Subjects' Performance Versus the Algorithms'

Algorithm Number of Subjects Average Perf. Algorithm's Estimated

# Using it Over the Subjects Perf.

1 2 0.543 0.559

2 3 0.688 0.580

3 6 0.732 0.564

4 3 0.585 0.486

5 4 0.645 0.530

6 7 0.704 0.639

H Alg., 6 Tasks 0 Subj., 6 Tasks

0.8

0.6 - 0
0.4

0.2-55
0 , I I I I- ..;. '

1 2 3 4 5 6
Algorithm #

Figure 5.11 The Subjects' Performance Versus the Algorithms': Six Tasks

Overall, the obtained results were satisfactory, and the next step of the research may

be described: Computing the workload associated with each algorithm and estimating Fmax
for each subject.
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CHAPTER VI

THE WORKLOAD: METHODOLOGY AND EVALUATION

This chapter evaluates the workload for the different algorithms. Each is first

transformed into an information theoretic model, i.e., an algorithm for which the entropy of

each variable may be computed. Then, the workload for each is evaluated.

Section 6.1 describes the different steps of the modeling process. First, the input

alphabet is characterized, but it is impossible to enumerate. Then, the internal variables are

reviewed. In particular, the level of detail needed, and the effects of temporary and0

permanent memory on the assessment of workload are studied. Finally, the impact of

having trials of ratios either larger than one or less than one is discussed. Section 6.2

describes the steps followed to compute the entropy of the different variables. Finally , the

workload is evaluated in section 6.3. First numerical values of the workload of the

different algorithm are given, then the feasibility of these values are discussed and the

experimental and analytical results are compared.

6.1 THE INFORMATION-THEORETIC ALGORITHMS

6. 1. 1 The Input Alphabet

The input alphabet is first defined for both numbers of ratios. Then the size of the

alphabets and the input entropies are estimated.

When the subjects start the experiment, the following information is available to S

them on the computer screen: the number of ratios that are to be processed for the trial, the

amount of time they will have to process the task and, finally, the distance and the speed of

the two ratios that they will first have to compare. (See Figure 4. 1). The time available to

perform the task is a parameter which varies from trial to trial.

0
It is assumed that the amount of cognitive workload required both to acknowledge

the amount of time available to perform the task and to register the time available is

negligible compared to the workload necessary to process the tasks. Therefore, the input

vector includes only the information about the number of ratios and the value of the speeds
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and distances of these ratios. As a result, the input vector to trials of three tasks consists

of a set of four ratios, whereas the input vector to trials of six tasks consists of a set of
seven ratios. Each threat is actually a pair of speed and distance values. In case of three

tasks, such an input vector noted x3 will be described as follows:

x3 = (dl/vl, d2/v2, d3/v3, d4/v4) (6.1)

where dl, d2, d3, and d4 are the distances associated with ratios 1, 2, 3 and 4, and vl,v2,

v3 and v4 are the speeds associated with the same ratios. An example of such an input

vector may be the following:

x3i = (11/ 34, 25/89, 32/33, 28/57) (6.2)

The values taken by the distances and the speeds are constrained by the requirements

described in section 4.5. There are three types of sets: First, the set S1 of possible speeds

and distances, then R1, the set of possible ratios where the speeds and distances belong to

S 1. Finally X3 , and X6 , are the sets of possible combinations of ratios for three and six

tasks. X3 and X6 , may also be divided into subsets of ratios larger than one and subsets of

ratios smaller than one, noted X31x<1, X 31x> 1, X61x< 1, X61,x>1, respectively.

The input alphabets are X3 for trials of three tasks and X6 for trials of six tasks. The

ordering of the components of each input vector matters, i.e., the two vectors x3,1 and x3,2
are not considered identical.

x3,1 = (11/34, 25/89, 32/33, 28/57) (6.3)

x3,2 = ( 25/89, 11/34, 32/33, 28/57) (6.4) %

The above vectors are different because the order in which the subjects process the

ratios often has an impact on the final solution. The subjects use approximation methods to

compare tue ratios; as a result, when given the same ratios but in a different order, the

probability of error is affected.

The input alphabets have been characterized. Now the distribution and the number

of elements of the input alphabets X3 and X6 must be evaluated to compute the entropy of
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the input vectors x3 and x6 .

The distribution of both alphabets is assumed to be uniform, because each input

vector xi is generated randomly. (It is assumed that each vector has the same probability of

being generated.). The cardinal of each input alphabet is difficult to assess because of the

constraints imposed on the ratios. Therefore these figures are estimated as follows. First -e
the number of elements of each alphabet is computed assuming that there are no constraints

on the sets of ratios. Then, a computer program is used to estimate the number of eligible

combinations of ratios when the constraints are included.

The pool of acceptable ratios less than one is 3003, and the pool of acceptable ratios

larger than one is 2407. (These figures were computed by generating every possible pair

of distances and speeds and counting all the feasible ones. The number of ratios larger than

one is less than the number of ratios less than one, because the ratios larger than one were

subject to an additional constraint: they had to be larger than 1.2).

If the constraints imposed among combinations of ratios were ignored, the number

of input vectors less than one for three tasks would be:

4

A 3003 = 3003 * 3002 * 3001 * 3000 = 8.1162 * 1013 (6.5)

and the number of input vectors larger than one would be:

4

A 240 7= 2407 * 2406 * 2405 * 2404 = 3.3483 * 1013 (6.6)

That is, ignoring the constraints imposed betweeen ratios, the size of the input alphabet X4

would be:

4 4 •

A3003 + A2o 7 = 11.4645 * 1013 (6.7)

The same way, ignoring the constraints imposed betweeen ratios, the size of the input

alphabet X6 would be:
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7 7

A3003 + A24o7 = 2.187 * 1024 + 4.634 * 1023 = 2.650 * 1024  (6.8)

Such large input alphabets do not allow enumeration.

The program which was used to estimate the number of feasible input ratios was

based on the method used to generate sets of ratios during the experiment. An iteration

consisted of picking a distance and a speed satisfying the necesary constraints. Then the

number of possible second ratios was computed by enumeration. A second ratio out of the

pool of possible ratios was then picked randomly, and the number of possible third ratios

was then computed... Following the same procedure for the remaining ratios, for each run,

the program computed the number of possible second N2 , third N3 , fourth N4..N7 ratios.

For each run i, for three tasks the number of possible combinations of ratios, noted Pi3

could be derived as the following product:

Pi3 = Nil*Ni2 *Ni3*Ni4  (6.9)

and for six tasks Pi6 :

Pi6 = Nil*Ni2 *Ni3*Ni4 Ni 5*Ni6*Ni 7  (6.10)

The program was run 150 times for both ratios larger than one and ratios less than

one. The estimated number of of possible first, second, third ..seventh ratios were derived

for ratios larger than one and for ratios less than one for both number of ratios as follows:

Ratios <1
150

Nil<l=( Nij<l ) / 150 j=lto7 (6.11)

Ratios >1
150

Nj>= Nij>l ) /150 j=lto7 (6.12)
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Therefore, the size of the input alphabet X3 could be derived as following:

S

4 _ 4 _

Cx3= it Ni4I <1 + it N 4 I>1  (6.13)
i =1 i =I

The results for three tasks were the following:

Cx3 = (3003*2567*2163*1793 )+ (2407*2355*2315*2276) (6.14)

Cx3= 2.9896* 1013 + 2.9867* 1013 = 5.9763 * 1013 (6.15)

The size of the input alphabet X6 , noted Cx6 was derived using the same method as for

X 3 . The results were as follows:

Cx6= (3003*2567*2163*1793 *1459*1161*913)

+ (2407*2355*2315*2276*2238*2202*2168) (6.16)

Cx6 = 4.6236* 1022 + 3.1910*1023 = 3.6534 *1023 (6.17)

The constraints imposed on the set of ratios also created difficulties when

considering the internal variables which are described in section 6.1.2.

6.1.2 The Internal Variables

Before considering the entropy of the internal variables and the workload associated

with each algorithm, the internal variables must be characterized. Therefore, as a first step,

the subjects' approach to the experimental task and the level of detail used for modeling the
algorithms are defined. Then the methodology used to assess the probability distributions

of the internal variables is described.

Two different approaches were possible when modeling the experiment Tht

subjects' tasks could be interpreted either as : 'to find the smallest ratio of a population

sample' or as 'given four ratios, find the smallest'. In the first case, the distribution of the
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value of the smallest ratio when observing samples of four would have been the critical

issue. In the latter case, the values of the smallest ratio would have been of no importance.

Instead, the smallest ratio's position in the sequence ( that is what is the first, second, third

or fourth) would have been the required solution. The first approach was modeled in this

thesis. The stategies that the subjects reported using were influenced by the values the

ratios could take. Therefore models based on population samples seemed more

appropriate. Another modeling issue related to short term and long term memory. With

regard to short term memory, it is assumed that the decisionmakers are memoryless: they

do not remember the approximated value of the ratio which was smaller in the previous

comparison and must approximate it again for the following comparison. Such an

assumption was derived after talking to subjects. They reported that they generally

reestimated the ratios for each comparison. With regard to long term memory, it was

assumed that the subjects could rank order the single digits ratios and did not need any

special algorithm to do so.

The modeling approach has been discussed and the level of detail used in the models

is now described. Within each algorihm, the different processes are kept as steps, but each

operation required to perform the process is not recorded as a variable. This methodology

keeps the number of internal variables under control; only the basic variables are recorded

as variables. The internal variables of the first decision of Algorithm 1 for three tasks are

described below in Figure 6.1, as an example.

The notation used in Figure 6.1 may be described as follows:

dij = jth digit of distance of ratio i. dij ranges from I to 9

0 if the two values are the same

w21 = min(Ti,Tj) = 1 if the first is smallest, Ti in this case

2 if the second is smallest, Tj in this case

w22 = distance associated with w21, where w22 takes the value of the distance

associated with the ratio corresponding to the value of w21. If w21 had taken a value of 1,

w22 would take the values of d(Ri), since Ri would be smaller than Rj; such a ratio could

be noted Ri'. If w21 takes a value of 0, each ratio (either Ri or Rj) has a probability of 0.5

of being chosen.
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Input vector, X X=(dl/vl, d2/v2, d3/v3, d4/v4)

Internal Variables, wi

wl = dl w5 = v1 w9 = trunc(dl/10) = dl 1 w13 = trunc(vl/10) = vi I

w2 = d2 w6 = v2 wl0 = trunc(d2/10) = d21 w14 = trunc(v2/10) = v21

w3 = d3 w7 = v3 wI I = trunc(d3/10) = d31 w15 = trunc(v3/10) = v31

w4 = d4 w8 = v4 w12 = trunc(d4/10) = d41 w16 = trunc(v4/10) = v41

IF w17 dl<20 and vl>90 THEN Y = RI END OF ALGORITHM

ELSE IF w18 d2<20 and v2>90 THEN Y = R2 END OF ALGORITHM

ELSE w19 =dl 1/vl1 T1

w20 =d21/v21= T2

w21 = min(T1,T2)

w22 =distance of w21 = d(w21)

w23 = speed of w21 = v(w21)

NEXT COMPARISON

Figure 6.1 The Information Theoretic Description of Algorithm 1: The First Decision

The modeling process and the choice of internal variables have been described. The

next step is to derive the probability distribution of each variable and compute the workload

of each algorithm. First, however, the impact of two of the experimental setups on the

probability distributions are discussed. The effect of having trials consisting of ratios either

larger than one or less than one is described in section 6.1.3. Then, the assumptions
required to evaluate the probability distributions are described in sections 6.2 and 6.3. "
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6.1.3 The Trials: Ratios Less than One and Ratios Larger than One

The trials were set up so that whether the ratios would be larger than one or less than

one would be picked randomly. Such a setup had an impact on the distribution of the
internal variables. There was a 0.5 probability that a trial would consist of ratios less than

one, and a 0.5 probability that the trial would consist of ratios larger than one. Therefore,
the entropy of an internal variable wi may be expressed as follows:

H(wi) - - Pwi(wi) log2 Pwi (wi) (6.18)
wi

where

Pwi(Wi) Pwiix<l(Wilx<l)*P(X<l) + Pwiix>i(wiIx>l)*p(x>l) (6.19)

x is the ratio from which wi is derived

p (x<l) = p (x>l) = 0.5 (6.20)

If a variable wi can only be derived either from a ratio larger than one, or from a ratio less

than one then exactly one of the two equations below holds (6.21 or 6.22).

PwiIx<I(wi'x<l) = 0 (6.21)

or

Pwilx>I(wiIx>l) = 0 (6.22)

The input vector, X, as well as the individual ratios (di / vi) are such variables. For such
variables equation 6.18 may be rewritten as:

H(wi) = - E Pwi(wi) log 2 Pwi (wi)
wilx<l (6.23)

- 2.E Pwi(wi) log2 Pwi (wi)
wilx>l 
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Finally equation 6.23 for the input entropy or the entropy of the ratios may be simplified as

follows:

H(wi) = - E Pwilx<1(wilx<l) *p(x<l) log 2 [Pwilx<l (wilx<l) *p(x<l)]
wilx<1

SPwi1x>(wix>l) *p(x>l) log2 [Pwilx>l (wilx>l) *p(x>l)] (6.23)
wilx>l ...

As a result, the input entropy for three tasks becomes:

H(x) = 0.5 * log2 ( 2.9896*1013) + 0.5* log2 ( 2.9867*1013 ) +1 (6.24)

H(x) = 22.3825 + 22.3818+1 = 45.764 bits (6.25)

Because of the experimental setup, for each variable, the distribution must be derived

seperately for the input vectors of elements larger than one and those of elements less than

one: two different probability distributions are obtained. Then, the two are combined as in

equation 6.19 to evaluate the entropy of each variable of the algorithms..

6.2 THE COMPUTATION OF ENTROPY

6.2.1 The Approach

The internal variables have been described and some of the computational issues

were raised in the previous section. This section describes the methodology followed to

assess the entropy of each variable.

A normal procedure to compute the probability distribution of each internal variable

is to use a computer program simulating a binning process to assess the histogram of each

internal variable as all the possible inputs are fed to the program. The probability

distribution is then derived from the histogram. For this particular case however, a binning

process using every element of the input alphabet may not be used because of the size of

the input alphabet. Therefore assumptions must be made to estimate the probability

distribution of each variable. First the two "categories" of internal variables are described.
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Then, the methodology to estimate the probability distribution is reviewed for each.

6.2.2 The Different Types of Variables

Two different types of variables may be identified within each algorithm: The

variables for which the entropy may be computed without comparing two ratios, and the

variables for which the entropy could only be computed after one or more of the

comparisons were made. For simplicity, the first group will be called the static variables

and the second the non-static variables. (In Figure 6.1, variables wi to w18 are considered

as static, whereas variables w19 to 23 are non-static.)

The static variables are variables that are repeated, and are the same for each four (or

seven) ratios. The distribution of the static variables were computed for one ratio, taking all

the possible ratios larger and less than one. Then the same distribution was assumed for

each ratio. These variables reflect the size of the input, and as a result dominate when

considering the entropy of the total system. The very large entropy of these variables tends

to overshadow the decision variables of the algorithms.

The non-static variables describe three categories of variables: the decision process,

the approximated value of the ratios which were chosen to be the smallest after a

comparison, and the intermediate variables used to arrive at the approximated value. The

probability distribution of each category of non-static variables was estimated using

computer programs. The distribution of the non-static variables changes after each

comparison.

6.2.3 The Entropy of the Static Variables: Assumptions and Methodology

In this section, the miost important assumptions used to compute the entropy of the

static variables are given, while the methodology used to compute the entropy of a few

static variables is described.

The first static variables to be considered are the ratios before they are compared. IA
The distribution among ratios less than one is assumed to be uniform. The same is valid

for the ratios larger than one. This assumptions is used even though the constraints

imposed on the ratios will make some ratios appear in sets more often than others. Let R
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be the pool of all feasible ratios, R0 the pool of all feasible ratios less than one and R, be

the pool of all feasible ratios larger than one. Then the above assumptions may be described

as follows:

V r F R, p (re Ro) = 0.5 = p (re R1) (6.28)

V rae Ri , V rbe R i , pr(ra)= Pr(rb) for i=0,1 (6.29)

Also, the entropy associated with each ratio of a set x = (RI, R2, R3, R4) is

assumed to be the same. It is assumed that the entropy of the ratios is independent from the

order the ratios appear on the screen. The entropy for each ratio may be computed as

follows:

HR - E PR(R) log 2 [ PR (R)] (6.30)
R

whereRe R

HR = 0.5 log2 (3003) + 0.5 log2 (2407) + 1 = 12.39 bits (6.31)

The distances and the speeds forming each ratio are the next static variables studied.

It is assumed that the distances are independent from one another, but are not independent

of the speed associated with them to form a ratio. The probability distribution among the

different possible distance values is not uniform. The entropy of the distances and the

speeds may be computed as follows:

Hwi= - Pwi(wi) log2 Pwi (wi) (6.32)
wi

where pwi(wi) was computed by iteration using the binning process, considering first all

the possible ratios larger than one, then all the possible ratios less than one. Each time the

value wi appeared, the frequency of wi was increased by one. The entropy was the

following:

Hwi= 6.41 bits (6.33) e.
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where wi is a speed or a distance associated with a ratio before this ratio has been compared

to another ratio.

The same procedure was done to estimate the probability distributions of the first

digit of both speeds and distances.

Hwi = 3.16 bits (6.34)

where wi is the first digit of a speed or a distance associated with a ratio before the ratio

was compared.

It is assumed that all the internal variables derived from the speeds and distances

were independent of the sequence of the ratios. (The first digits are an example of such

derived internal vaiables.) Therefore, these variables are assumed to be equally distributed

for all four ratios when considering trials of four ratios, and all seven ratios when Xk

considering trials of seven. For example, when considering Algorithm 1, which is shown

in Figure 6.1, the sets of variables shown in Table 6.1 are equally distributed.

Table 6.1 Sets of Equally Distributed Variables

Variables Corresponding Internal

Variables

dl,d2,d3,d4 wl to w4

vl, v2, v3, v4 w5 to w8

dll,d21,d31,d41 w9 to w!2

vll,v21,v31,v41 w13 to wl6

decide ifdi < 20 and vi > 90 w17, w18, w24, w32

dil/vil, i =1 to 4 w19, w20, w28, w36

The probability distribution of the other static variables were derived using the

binning process and the assumptions just described.
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6.2.4 The Entropy of the Non-Static or Decision Variables: Methodology S

The distribution of the non-static variables was computed differently for each

algorithm, since these variables were algorit" ,n-specific. However, the same terminology

may be used to describe the steps that were f iowed.

Within each algorithm, the first two ratios noted Rland R2 were approximated into

T1 and T2 which are the variables compared for the first decision, D1. It is assumed that

T1 and T2 are equally distributed. The distribution of the decision D l, as well as that of

the minimum of T1 and T2 was found by first assessing the distributions of T1 and T2 ,

then, finding the probability that T1 would be smaller and finally by finding the probability

distribution of the minimum of T1 and T2. The same procedure was continued until the

fourth or seventh approximated ratio was compared to the minimum of the previous

comparison. While such a procedure was followed to find the distribution of the decision
variables, the same method was used to assess the distribution of the 'non-static' variables.

The probability that the approximated ratio xlwith distribution Pxl be less than the

approxiamted ratio x2 with distribution px2 was computed as follows:

00 S

p( xl< x2)-- Pxl(xl) I Px2(x) (6.37)

aUx1 xl

The distribution of the min of two variables xl, x2, was computed as follows:

y =min (xl, x2) (6.38)

00 
.0WIW"

Py(y) = PxI(Y) Px2(x2) + Px2(Y) I PxI(xl) (6.39)

y y

These formulas were used to compute the entropy of the non-static variables of the

different algorithms. The entropy of each variable is shown in Appendix F. '.4
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6.3 THE WORKLOAD FOR EACH ALGORIM

This section first summarizes the most important assumptions regarding the

assessment of the variables' probability distribution. Secondly, the numerical values of the

workload are presented and discussed. Thirdly, the feasibility of the results is reviewed by

checking the consistency between the algorithms. Finally, the assumption derived in

Chapter III regarding the correspondence between the workload for three and for six tasks

is discussed. The evaluation of workload allows the testing of the hypotheses concerning

the bounded rationality constraint in Chapter VUI.

6.3.1 The Most Important Assumptions

Many assumptions and approximations have been described in section 6.2. Each has

been used in the computation of the total entropy of the appropriate algorithm(s) to evaluate

the workload associated with each algorithm. The most important and the most critical

were the following:

(1) Assume uniform distribution of the input.

(2) Assume uniform distribution of the ratios, i.e., each ratio has the same

probability of occurring in an input.

(3) The distribution of the approximated ratios and all the intermediate steps to obtain

the approximated ratios is based on the first two assumptions.

(4) After a given comparison, the rate of change in entropy of the similar types of

non-static variables is assumed to be the same. The rate of change is defined as the ratio of

the entropy of the non-static variable used for comparison i to the entropy of the same

variable when used for comparison i-i1. ( Examples of similar types of non-static variables

would be the first digits and second digits of the speed values, or the the actual distance W

values and the approximation of the distance values used to make the comparison.)

6.3.2 The Numerical Values

The workload for each number of ratios and each algorithm was computed following

the methodologies described in section 6.2. The numerical values are summarized in Table

6.2. As one may see from the table, the value of the workload varies significantly from
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algorithm to algorithm. For three tasks the workload ranges from 165.62 bits to 275.58

bits and the mean is 235.03. For six tasks, it ranges from 297.92 to 513. 59 bits and the

mean is 433.04 bits.

Table 6.2 The Workload Associated with the Algorithms

Algorithm Workload Three Tasks Workload Six Tasks

(in bits) (in bits)

1 210.103 386.700
2 262.03 1 480.059

3 275.582 513.594

4 227.858 417.450

5 165.615 297.915

6 268.995 502.530

The variation among algorithms is weighted by the number of subjects who were

associated with the algorithm. In Chapter V, each subject was assigned an algorithm

which attempted to model the basic operations or approximations performed by the subject.

Therefore, the average (over the subjects) workload required by the experiment may be

computed by multiplying the number of subjects who "used" a given algorithm by the

workload of this algorithm. The results, when considering the number of subjects

associated with each algorithm, are summarized in Table 6.3.

Table 6.3. The Average Workload for the Experiment Over SubjectsFThree Tasks Six Tasks p

Average workload 243.625 450.270

Standard Deviation 40.353 79.057
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6.3.3 Consistency Among the Algorithms

When looking at the workload for both three tasks and six tasks, the workload

associated with Agorithm 5 is signficantly lower than that of the other algorithms (165.615

bits for three tasks and 297.915 bits for six tasks). Such a low workload is explained by

the structure of the algorithm itself. The algorithm consists of comparing the difference

between the speeds and distances of the two ratios. Such a process requires only two steps

before making the comparison i.e., compute each difference, which drastically reduces the

workload. The workload is not based on the number of steps, but on the entropy

associated with each variable. Because many of the intermediate internal variables have

very significant entropies, the number of intermediate steps required to transform the input

into variables that may be compared plays a significant role in the total entropy. Such an

observation is particularily true for Algorithm 5, which is very simple. It is also applicable

to Algorithm I which requires a limited number of steps before the comparisons are made.

Algorithm 1 has a larger workload than Algorithm 5 (210.103 bits for three tasks,

and 386.700 bits for six tasks versus 165.615 and 297.915 bits) but it is still lower than

that of the other three algorithms. Six steps are required to transform two input ratios into

two variables that may be compared: truncate each speed and each distance (4 steps), and

then form each single digit ratio (two extra steps). The other algorithms require a significant

number of steps before a comparison is made.

The fact that algorithms 1 and 5 have smaller workload than the other three is

explained by their structure. Another method to check the results of the workload values is

by looking at the 3 different categories of algorithms which were derived in Chapter V.

The first category included algorithms 1 and 2 in which the ratios were transformed

into single digit ratios and were compared. Algorithm 2 was defined as requiring more

processing than Algorithm 1 since for the first case the rounded ratios are compared

whereas in the other case the truncated ratios are compared. The computations of workload

confirmed the expectations, the workload for Algorithm 2 is larger than that for

Algorithm 1 (210.103 bits versus 262.031 bits for three tasks and 386.700 bits versus

480.059 bits for six tasks, an increase of 24.7 % for three tasks and 24.1 % for six tasks).
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The second category of algorithms included algorithms 4, 5 and 6. The workload

for Algorithm 4 is larger than that for Algorithm 5. The same structure is used, but

Algorithm 4 computes four differences as opposed to two and makes two comparisons as

opposed to one. The increase of workload was very significant, 37.6% for three tasks,

and 40.1% for six tasks. Such an increase could be expected since the amount of internal

processing is almost doubled. Algorithm 6 is a combination of algorithms 2 and 5. It uses

the first steps of Algorithm 5 to determine if a small ratio could be spotted before any

computation. If the test is not relevant, it rounds each ratio using the same methodolgy as

Algorithm 2. The workload for Algorithm 6 was slightly larger than that for Algorithm 2

as expected, (268.995 bits versus 262.03 1 bits for three tasks, and 502.530 bits versus

480.059 for six tasks.) The increase of 2.8% for three and 4.6% for six tasks is small.

The testing variables used in Algorithm 6 (and not present in Algorithm 2) have entropies

of a few bits only.

Finally, Algorithm 3 is a seperate category since a different strategy is used for ratios

less than one and larger than one. As a result, the number of internal variables is
significantly increased even though each comparison requires only six intermediate

variables (as Algorithm 1), two of which have entropies less than 2. Because of the

different strategies for ratios less and larger than one, the workload for Agorithm 3 is the

largest of all.

From the above remnarks, it appears that the values for the workload are consistent

between the algorithms. As a result the relative differences between the workload of the

different algorithms are feasible and conclusions relating the different algorithms and their
'users' may be derived based on these values. The next step is to compare the workload

for the same strategies, but for the different number of tasks within a trial.

6.3.4 Comparing the Workload for Three and Six Tasks

In Chapter III, it was postulated that the important parameters were not the number

of ratios but the number of tasks. The assumption was: the wrkload per comparison is

approximately the same for three and six tasks i.e., the workload for six tasks should be

twice that for three tasks. The experimental results seemed to confirm this assumption since

the T* values for three and six tasks were not significantly different. This section first

shows the ratio of workload for three and six tasks for each algorithm. Then the values
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obtained are discussed and explained, and the validity of the assumption is assessed.

Finally, a simple linear regression modeling the workload as a function of the number of

tasks is presented. 0

The analytical results confirm the assumption that the workload for six tasks is

approximately twice that for three tasks. On average, the ratio of the workload for six tasks

to that of three tasks is close to 1.84. Table 6.4 shows the ratio for the six algorithms as

well as the average over the six algorithms and the average when introducing the frequency

of each algorithm.

Table 6.4 The ratio of the Workload for Six Tasks to that of Three Tasks

Algorithm # Ratio Average Over Subjects
(Six Tasks / Three Tasks)

1 1.841 1.845

2 1.832

3 1.864

4 1.799

5 1.868

6 1.887

Average Over 1.839

Algorithms

The fact the the workload for six tasks is not twice that for three tasks should not be

regarded as unwanted noise. Such a 'discrepancy' is derived from the analytical models.

First the entropy of the input is not proportional to the number of comparisons and does not

increase linearly with the number of ratios because of the log function. The input for three

tasks is 45.76 bits and for six 77.68 bits ). Then, the internal variables increase this

difference even more because the entropy of more than half of the internal variables reflect

the entropy of the very large input alphabet. Finally, when considering the distribution of

the minimum of two equally uniformely distributed variables (these were the assumptions

used), it will be skewed towards the smallest values. This is particularly relevant to our

experiment when considering the distribution of the min as the number of comparisons
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increases. The previous paragraph may be described analytically as follows:

Let X be an ordered population uniformly distributed and let N be the size of the
population. Then

p (X) ~ Itxe X (.0Px(x) = (6.40)X 0' otherwise

Let y = min (x1 , x2) where xi, x2 are two elements of X, and fy the distribution of
y then:

2 y
-( -- ) ifyeX
N) N (6.41)
0 otherwise •

Let z = min (y, x3), x3 e X and gz the distribution of z, then

3 z2
-(1V ifzeX (.2

0 otherwise

The distribution of the variable t 6 X being the smallest of the nth comparison and a
variable u 6 X is:

n It )n-ft~t) R -9(6.43)

0 otherwise

As an analogy to our experiment, x, and x2 may be assumed to be the first two ratios

to be compared. y takes the values of the ratios kept from the first comparison, x3 is the
third ratio to be compared, z, takes the values of the ratios kept from the second
comparison ect... The distributions become more and more skewed, thereby reducing the
entropy of the minimum after each comparison.
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The decrease in entropy after each comparison ranges between 2% and 5% of the

non-static variables. This is not very significant when considering the entropy of the whole

system and the entropy of the static variables which are not affected by the decrease due to '

the comparisons. Also, in this particular case, the entropy related to the large input tends to

dominate the entropy of the system and absorb the changes due to the decrease of the

entropy of the decision variables (called non-static variables).

A simple least squares fit using the twelve data points of Table 6.2 (three and six

tasks, algorithms 1 through 6),

Y1 =aXi +b (6.44)

where

Xi= 3, ... , 3, 6, ... , 6

Yi= 210.03, 262.031..., 268.995, 386.700, 480.059, ...502.530

yields

Y = 66 X + 37 (6.45)

For X =3 Y =235

X=6 Y =4330

Note that 37 is equivalent to about half the effort of a comparison and is not very

significant either for three or six comparisons. Because of the very few data points used

(twelve), this regression should only be considered as a gross model, but it is important to

note that the results are consistent with the other observations.

Therefore, considering all the assumptions which have been made throughout this

thesis, the analytical results do not contradict the experimental results. The assumption0

made in Chapter IV was reasonable: the workload per comparison is approximately the

same for three and six tasks.

The workload was evaluated for each algorithm and the values were consistent both0
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between algorithms and with the experimental results. Therefore, these values may be used

to assess the bounded rationality constraint for each subject and test hypotheses about the

stability of Fmax both across subjects and across tasks.
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CHAPTER VII

THE BOUNDED RATIONALITY CONSTRAINT: 6V

RESULTS AND ANALYSIS

This chapter derives the bounded rationality constraint for each subject and studies its

behavior. First, the hypotheses regarding the stability of Fmax are stated. Then, the
methodologies used to evaluate Fr.lax and to test the hypotheses are described. Next, Fmax

is evaluated for each subject and each type of trials, three and six tasks. Finally the validity

of the hypotheses are tested and the results are compared to the postulations made in

Chaper IV.

7.1 THE HYPOTHESES

Two hypotheses concemingthe stability of Fmax are to be confirmed.

Hypothesis (1). Fmax is stable for an individual when minor tasks changes are

made.

Hypothesis (2). Fmax is stable across individuals and across tasks.

7.2 METHODOLOGIES i

7.2.1 The Procedures to Evaluate Fmax

In Chapter IV, the minimum average time required to perform the experiment was

derived for each subject using the experimental results. In Chapter VI, the workload ,

associated to each model was evaluated. The bounded rationality constraint which is noted

Fmax may now be computed for each subject and for both types of trials combining the

experimental and the analytical results.

As described in section 2.3 , Fmax is the ratio of the workload associated to the trial

to the time threshold T*. Since the values of T* were evaluated as a time per task, the

value of T* has to be multiplied either by three or six to consider the total duration of the

trials. Therefore, for each subject and for both number of tasks, the value for the bounded
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rationality constraint may be computed as follows:

Fmax ,ij = G ij / [j*T*ij] (7.1)

where

i is the subject number and j is the number of tasks

G ij is the workload of the algorithm associated to subject i for j tasks

T*ij is the threshold processing time associated to subject i for j tasks

7.2.2 The Procedures for Testing the Hypotheses

The methodologies used to test the hypotheses are very similar to the methodologies

used to test for the stability of T* across trials and across subjects.

To test the stabity of Fmax across trials, first the distributions of Fmax,3 and Fmax,6

are assessed using a statistical test (the Chi-Square test) and are then compared. If the two

distributions are of the same type, then it is tested if the mean of the two distributions are

significantly different using a statistical test, (the t test).

The second hypothesis: the stability of Fmax across trials and subjects is more simple

to confirm. First, an Fmax value is estimated for each subject, ( for each subject, Fmax is
the average of Fmax,3 and Fmax,6). Then, a Chi-Square test is used to estimate whether the
Fmax distribution is significantly different from the normal distribution or not. AI

non-significant difference would lead to the conclusion that Fmax is stable both across

subjects and tasks.

7.3 COMPUTATION OF Fmax

The values of Fmax were computed for each subject for both number of tasks and are

shown in Table 7.1 and were summarized in Table 7.2. The average value of Fmaxj over

subjects is 44.35 bits/sec for three trials versus 41.00 bits/sec. for six trials. The standard
deviation for three tasks is quite large 15, as is the one for six tasks, 13. It is interesting to
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notice that in both cases the standard deviation is almost one third of the mean.

Table 7.1 The Fmax Values for Each Subject and Both Numbers of Tasks

Subject # Fmax,3 Fmax,6

20 42.776 30.7 14

21 47.036 32.636

22 83.378 64.422 '

23 64.838 46.516

25 25.896 23.63 1

26 38.380 26.350

27 45.704 43.714

28 49.5 10 41.220 -

29 28.214 22.549

31 42.719 26.839

33 31.605 29.064

34 36.016 61.100

35 27.241 35.911

36 38.124 34.798

37 30.595 31.217

38 17.310 24.954

39 44.786 44.392

41 54.397 62.652

44 65.7 18 55.087

45 42.096 29.775

46 28.737 23.903

50 45.150 44.840

51 31.113 42.148 >~

52 64.684 54.414

53 40.672 42.081
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Table 7.2 Summary of the Fmax Values for Both Numbers of Tasks

Fmax,3 Fmax,6

(bits/sec) (bits/sec)

Average 42.668 38.997

St. Dev. 15.068 12.873

Min 17.310 22.549

Max 83.378 64.422

It is important to realize however, that the values obtained for the bounded rationality

constraint are not of any specific interest if just considered as values. The different

algorithms that could be used to model the same task could increase the workload, and

therefore Fmax as well by a factor of two or more. Therefore, it is by studying the

distribution of Fmax as the tasks is slightly changed, and across subjects, as well as by

comparing the conclusions derived analytically with the conclusions derived experimentally

that the significant conclusions may be derived. As long as each algorithm is modeled

consistently with the others, the comparisons may be done.

7.4 TESTING THE HYPOTHESES

7.4.1 The stability of Fmax Across Trials

To test the stability of Fmax across trials, the distribution of Fmax,3 and Fmax,6 must

first be evaluated. In Chapter IV, it was established that the T* values were normally

distributed for both three and six tasks and it had been postulated that the distribution of the

T*'s should be closely related to that of Fmax.This postulation was confirmed: goodness

of fit tests showed that the distribution of both Fmax,3 and Fmax,6 were normal. (The Q2  '.
error was 2.0 for three trials and only 0.8 for six trials. See details in Appendix D).

Figure 7.1 shows the distribution of Fmax,3 over subjects, and Figure 7.2 shows the

frequency distribution of Fmax,6. The difference between the normal distribution and that

of the Fmax,3 values is shown in Figure 7.1, whereas the difference between the normal

distribution and the Fmax,6 values is shown in Figure 7.2. (Notice that the size of the

intervals are not the same. The intervals are constructed as for the Chi-Square test: the

cumulative probability within each interval is 0.2, see Appendix D.)
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Figure 7.1 The Distribution of Fmu for Three Trials
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33.20 44.79 56.38

Figure 7.2 The Distribution of Fma for Six Trials

The next step needed to validate the hypothesis that Fmax is stable across tasks is to

compare the means of the Fmax,3 and Fmax,6 distributions. The experimental results had
postulated that Fmax was not significantly different for trials of three and six tasks. This
result was confirmed by a statistical t test. The value for the statistical t test was 1.79 . The
critical value for a two sided t test at a 0.95 level of confidence with 24 degrees of freedom
is 2.06; 2.06 is larger than 1.79, so the hypothesis that the two distributions are of same

mean may not be refuted. ( See additional details in Appendix D.)

Therefore, one may say that Fmax is stable for each subject as the number of tasks is
varied from three to six. As a result, it may be assumed that there is only one significant
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value for each subject, which will be taken as the average of the Fmax 's for three and six

tasks.
@

In addition, these results provide indirect evidence for the stability of Fmax over time,
since each subject was tested on three or four different days. (A "composite" curve

resulting from wide day to day fluctuations in the bounded rationality constraint would not
likely reveal a clear threshold.) This stability suggests that it may not be necessary to

measure a decision maker's Fmax value for every type of task the decision maker may have

to perform. Instead, the decision maker's F,= value could be measured using a prototypic
"calibration" task. The value obtained from this prototypic task could be safely assumed to
apply to a substantial range of structurally similar tasks. 0

7.4.2 The Stability of Fm Across Subjects

The next step of this Chapter is to study the behavior of Fma over all subjects. The •
Fmax associated with each subject i was computed as follows:

Fmax, = Fmax,ij /2 (7.2)
j=3,6

for i = 1 to 25

The Fmax values were summarized in Table 7.3. A Goodness of fit test showed that

the distribution was not significantly different from normal (the error, see Appendix D is
Q2 = 5.2 < X0 .95,2 = 5.99 ). Therefore, it may be assumed that the distribution of Fmax

over subjects is stable, and the analytical results confirm the experimental results. Figure
8.3 shows the disribution of the individual values of Fmax .

The analytical results have confirmed the experimental results. The bounded

rationality not only exists for all the subjects, but it is uniformly distributed for each type of
trials over the subjects, it is stable to minor tasks changes, and finally it is also uniformly

distributed when assuming only one Fmax value for each subject.

o
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Table 7.3 Summary of the Average Fma Values over Subjects

( in bits per sec.)

Mean 40.830

Standard Deviation 13.013

Min 21.132

Max 73.906

Observed - Normal

F 12
r 10
eq 8
u 6
e 4
n 2

< 20.03 20.04 to 35.81 to 50.20 to > 65.26
35.81 50.19 65.25

Figure 7.3 Distribution of the Average Fmax Values over Subjects

When considering a particular task performed by well trained decisionmakers, it may

be assumed that despite the individual differences and the different algorithms used, the

bounded rationality is uniformly distributed among people. One could submit the
hypothesis that in a very strict environment such as the military, where people who perform

the same job should all be very qualified, the distribution of individual bounded rationality

constraint for similar tasks would not only be normal but also extremely peaked. This

could help significantly when designing organizations where the decisonmakers are not to

be overloaded.

0
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

8.1 CONCLUSIONS

8.1.1 The Thesis in Review

Both the analytical and experimental results were needed to answer most of the

questions related to the bounded rationality constraint of human decision makers. The first

significant results are derived from the experimental analysis in Chapter IV. First the

existence of the bounded rationality constraints was proved. Second, the minimum time

required to make one comparison on average, (noted T*3 for three tasks and T*6 for six)

were identified for each subject. Finally, from the distribution of the T* values,

postulations were made about the two hypotheses which were still to be tested: the stability

of the bounded rationality constraint both across similar tasks and across subjects. The

first step in confirming these postulations is made in Chapter V where algorithms

representing models of the subjects' decision processes are identified and their plausibility

is tested. Then, the workload associated with each algorithm is computed in Chapter VI.

Finally, in Chapter VII, the experimental and analytical results are combined to derive the

value of the maximum processing rate for each subject both for trials of three and six tasks.

The hypotheses are then tested: the bounded rationality does not only exist but it is both

stable across similar tasks and across subjects.

8.1.2 Applicability of Information Theory

Information theory was the mathematical tool used to assess the amount of cognitive

workload required to perform the experiment given the different algorithms that were

modeled. The workload associated with the different algorithms was consistent with the

complexity of the algorithms and the different categories of algorithms. Such a result gave

some validation of the mathematical model used. When trying to model the difference

between the number of ratios, there was a slight discrepancy between the experimental and

analytical results. Three postulations were made to explain the slight difference. First, theI

model for three and six tasks might not have captured the different approach that the

subjects might have taken during the experiment . When assessing models in Chapter V, it
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was found that simulations of the models for six tasks consistently predicted worse

performance than the subjects', whereas the performance was very similar when

considering three tasks. Second, considering the very large size of the input alphabet, it is

possible that the subjects did not recognize that the probability distribution of some of the

variables were changing as the number of ratios to consider increased; the subjects might

not have changed their strategy accordingly. Third, it should not be forgotten that the

experimental results, particularly the T*'s were artificially constructed from the data, and

therefore necessarily introduced some marginal errors in the experimental results. Finally,

other factors such as time allocation, or short term memory may have affected the

workload, but these factors are beyond the scope of this thesis. Because not a single

subject mentioned using a different approach when processing trials of three and six

comparisons, the models described in this thesis are reasonable considering the small

discrepancy.

8.1.3 The Existence of the Bounded Rationality Constraint

The existence of a bounded rationality constraint for each subject was proved from

the experimental results. Performance was fairly stable before it dropped rapidly. The S

curves which were used to model the experimental results erased any discrepancy and at the

same time any change in strategy which might have been apparent otherwise. Therefore, it

may be postulated that the individual T*'s which were constructed graphically, represented

an average over several t*'s , each associated with a given algorithm requiring a certain

amount of cognitive workload. The individual t*'s were not identifiable, therefore, the

value which was retained was the T*. The T* value was also considered as the critical

value (instead of any possible t*), because the workload surrogate as computed using

information theory, requires that the processors be above the bounded rationality

constraint, and such was not possible to assert for the t*'s. The algorithm associated with -

each T* was supposed to be the algorithm corresponding to trials for which enough time

was allowed for processing the task.

8.1.4 The Stability of Fmax Across Tasks and Across Subjects

Both the experimental and analytical results confirmed the stability of Fmax across

similar tasks and across subjects. However, when comparing the experimental and

analytical results, it appeared that the stability of Fmax,3 and Fmax,6 over subjects (both 0
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distributions are normal) was a more reliable result than the stability of the individual Fmax

across subjects. ( The Q2 value was larger for the Fmax distribution than for the Fmax,4 and

Fmax,7 distributions). This slight difference is derived from the discrepancy between the-B
workload per comparison for trials of three and trials of six tasks. One may conclude
however that Fmax is stable across tasks for each individual, across individuals for each
type of task, and finally that Fmax is stable when considered simultaneously across tasks

and across individuals. Considering the nature of the experiment, (the size of the input
alphabet which did not allow enumeration), the number of different strategies that could be

used to perform the task, the speed at which some of the subjects were capable to perfonn

the task, the obtained results were very significant.

8.2 FUTURE RESEARCH

This experiment is only the first in a series of experiments trying to analyze and

quantify the bounded rationality of human decisionmakers under pressure. The task which
was analyzed was very basic and included only a single decisionmaker. Research has been
undertaken at the Laboratory for Information and Decision Systems at MIT to design

multi-person experiments and both validate some of the results obtained in this thesis on a
multiperson level and derive other conclusions on the behaviour of the bounded rationality

~constraint. When considering multi person organizations, the impact of one DM being

overloaded on the performance on the organization as a whole is also an interesting topic to
investigate. In the latter case, the different organization structures should be studied.

When considering single person organizations, several issues which were. raised in

this thesis but not explored thoroughly could be investigated. The first topic relates to the
small discrepancy which has appeared between the experimental results and the analytical

~~results. In particular, the question concerning the different approaches to a seemingly _

similar task should be raised and explored further. How can the fact that subjects seem toI consider making three or six comparisons as just twice the same task, ( the T*'s for three

and six tasks were similar) be modeled or predicted? Which other factors were involved
and not considered by the models? The second topic relates to the nature of this
experiment. The very large input alphabet only allowed approximations when computing

the entropy, and the simple task permitted many different strategies which were not clearly

identifiable. Running a single person experiment but with a more complex task which
would allow fewer strategies and involve long term memory to a lesser extent could be
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considered. An other interesting task would be to analyze the experimental results using a

different methodology to assess the T*'s and test if the conclusions still hold as strongly.

Finally, the change in strategies as the time allotted to perform the tasks is decreased should

be investigated. The slope at which the performance decreased should give a reasonable

indication of the coping strategies (if any) that each subject used to behave toward the

increasing time pressure. One could investigate the implication of subjects switching

strategies as the time allotted per trial decreased on the evaluation of Fmax.
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APPENDIX A

THE PARAMETERS OF THE GOMPERTZ FIT FOR EACH SUBJECT AND BOTH 0

NUMBERS OF TASKS

Table A. 1 Three Tasks: The Parameters of the Gompertz Fit for Each Subject

Subject # a b c ,

20 0.6953 1.6076 1.0212

21 0.6010 9.5199 2.1388

22 0.5821 121.0751 7.1516

23 0.5425 23.2790 4.1538

25 0.6623 4.1534 1.4740

26 0.5540 3.9367 1.6926
27 0.8064 5.6502 1.7165

28 0.6656 3.0943 1.5349

29 0.6773 1.4991 1.0851

31 0.5414 222.7760 4.0071 -

33 0.6080 2.3370 0.9289
35 0.7903 2.0479 0.9781

36 0,6358 4.1795 1.5536

37 0,710i 2.3430 1.0926

38 0.6431 2.7444 1.5118
39 0.5910 4.0600 0.7710

40 0.7374 3.5761 1.4590

41 0.6100 2.9660 1.7020

44 0.6700 7.5195 2.6726

45 0.5908 17.1299 2.1973

46 0.6125 4.7761 1.0447 "-

50 0.6683 6.3880 1.7990 •

51 0.8295 0.9083 0.5494

52 0.6771 20.3327 3.4126

53 0.6100 4.1469 1.4246
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Table A.2 Six Tasks: The Parameters of the Gonipertz Fit for Each Subject

Subject # a b c

20 0.7733 2.1530 0.8917

21 0.6825 8.8417 1.5899

22 0.5939 82.9349 5.6819

23 0.5774 3.3351 1.9541

25 0.6242 5.7319 1.6488

26 0.6643 2.6720 1.1043

27 0.8147 8.0274 1.9412

28 0.6932 2.0653 1.1767

29 0.7224 2.1707 1.1323

31 0.5843 11.1012 1.5914

33 0.6706 4.7400 1.1894

35 0.6987 9.9133 2.9269

36 0.5592 31.5352 3.7387

37 0.6954 2.6711 1.1221

38 0.6740 3.2513 1.8216

39 0.4214 71.0487 2.3160

40 0.6993 9.0014 2.0307

41 0.7 177 9.8930 2.9997

44 0.7139 7.6628 2.4163

45 0.7106 12.7590 1.5870

46 0.8040 6.4231 1.0212

50 0.6613 6.1570 1.8930

51 0.7381 2.2252 1.2399

52 0.6361 14.7120 2.8631

53 0.7177 6.2944 1.7876
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APPENDIX B

THE R2 VALUES: THE GOMPERTZ VERSUS THE LINEAR FIT0

Table B 1 The R2 Values for each Subject for Both the Linear and the Gompertz Fit

Subject # Three Tasks Six Tasks

S Curve Line Curve S Curve Line Curve

20 0.993 0.790 0.984 0.766
21 0.984 0.730 0.993 0.897
22 0.985 0.252 0.992 0.452

23 0.999 0.424 0.988 0.501
25 0.989 0.785 0.994 0.829
26 0.990 0.662 0.992 0.828
27 0.985 0.780 0.989 0.782
28 0.989 0.733 0.991 0.741
29 0.992 0.7 17 0.992 0.8260
31 0.967 0.720 0.972 0.847
33 0.972 0.640 0.989 0.879
35 0.988 0.798 0.987 0.656
36 0.990 0.793 0.986 0.525
37 0.990 0.774 0.977 0.653
38 0.932 0.668 0.986 0.664
39 0.952 0.668 0.927 0.864

40 0.991 0.773 0.987 0.804

41 0.982 0.719 0.984 0.849
44 0.971 0.457 0.993 0.541
45 0.977 0.791 0.982 0.891
46 0.967 0.861 0.968 0.923
50 0.986 0.749 0.995 0.827
51 0.987 0.749 0.983 0.827
52 0.985 0.290 0.996 0.627

53 0.991 0.826 0.965 0.625
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APPENDIX C

THE T* VALUES

Table Cl. The T* Values for Both Numbers of Tasks for Each Subject

Subject # T* 4 T*7

20 2.147 2.787

21 1.857 2.452

22 0.911 1.080

23 1.171 1.496

25 2.132 2.101

26 1.825 2.446

27 2.010 1.958

28 1.855 2.077

29 1.957 2.202

31 1.778 2.592
33 2.764 2.753

35 2.490 1.371

36 2.027 1.383
37 2.352 2.407

38 1.804 1.591

39 4.046 2.583

40 2.051 1.928 0

41 1.648 1.337
44 1.398 1.554

45 2.075 2.687

46 3.141 3.504 0

50 1.986 1.868

51 2.952 2.031

52 1.386 1.539
53 2.205 1.990
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APPENDIX D

THE DIFFERENT STATISTICAL TESTS: PROCEDURES AND RESULTS

D. 1 THE GOODNESS OF FIT TESTS: THE X2 TESTS

D.I.1 Overview

Goodness of fit tests were used to test whether the distribution of the T*'s and the the

distribution of the Fmax 's for both fthree and six tasks were normally distributed. The test

is done as follows:

n
Q2 - E (Expectedi - Observedi )2 / Expected i  (D. 1)

where Q2 is the deviation error form the normal, n is the number of intervals chosen,

Expectedi is the expected frequency in interval i if the distribuiton was normal, and

Observedi is the oberved frequency in interval i.

The intervals were constructed around the mean, using + 0.842 and + 0.253 as

multipliers of the standard deviation to obtain five intervals with a probability density of

0.2. As a result the expected frequency per class for a normal distribution would be 5,

and the assumptions necessary to perform a Chi-Square test would be satisfied. ( A

minimum expected frequency of 5 per class is required to perform a goodness of fit test.)

For the distribution to be accepted as normal, the Q2 value must be less than the X2

value corresponding to the level of confidence chosen and the degrees of freedom. For

0.95 level of confidence and 2 degrees of freedom (2=5-2-1) we have:

X20.95,2 = 5.99 (D.2)

D. 1.2 The Goodness of Fit Tests for the Different Distributions

For each distribution, a goodness of fit test was used to establish whether the
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distributions were different from normal. Tables D1 through D5, show the detailed

analysis used for the different distributions.

Table D. 1 The Chi-Square Test for the Distribution of T3*

Ranges for T3* Observed Expected Error

(in sec. ) Frequency Frequency

< 1.53 4 5 0.2

1.54 to 1.91 6 5 0.2

1.92 to 2.24 9 5 3.2

2.25 to 2.63 2 5 1.8

2.64 > 4 5 0.2

Total 25 25 5.6

Q2 =5.6 < 5.99. Therefore, the distribution of T3* is not sign; lcantly different from

the normal.

Table D.2 The Chi-Square Test for the Distribution of T6*

Ranges for T6* Observed Expected Error

(in sec.) Frequency Frequency

< 1.57 7 5 0.8

1.58 to 1.92 2 5 1.8

1.93 to 2.21 7 5 0.8

2.22 to 2.56 3 5 0.8

2.57 > 6 5 0.2

total 25 25 4.4

Q2 -4.4 < 5.99. Therefore, the distribution of T6* is not significantly different from

the normal.

11 1. 1 1 1 , 1 1 15.
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Table D.3 The Chi-Square Test for the Distribution of Fmax,3

Ranges for Fmax,3 Observed Expected Error

(in bits ) Frequency Frequency

< 29.98 5 5 0.0

29.99 to 38.88 6 5 0.2

38.86 to 46.48 7 5 0.8

46.49 to 55.35 3 5 0.8

55.45 > 4 5 0.2

Total 25 25 2.0

Q2 =2.0 < 5.99. Therefore, the distribution of Fmax, 3 is not significantly different

from the normal.

Table D.4 The Chi-Square Test for the Distribution of Fmax,6

Ranges for Fmax,6 Observed Expected Error

(in bits) Frequency Frequency

<28.16 6 5 0.2

28.17 to 35.74 6 5 0.2

35.75 to 42.25 4 5 0.2

42.26 to 49.84 4 5 0.2

49.85 > 5 5 0.0

Total 25 25 0.8

Q2= 1.2 < 5.99. Therefore, the distribution of Fmax,6 is not significantly different

from the normal.

110

IS % %P~~



0

Table D.5 The Chi-Square Test for the Distribution of the Average Fmax

Ranges for Fmax  Observed Expected Error

(in bits ) Frequency Frequency

< 29.87 4 5 0.2

29.88 to 37.54 9 5 3.2

37.55 to 44.12 2 5 1.8

44.13 to 51.79 5 5 0.0

51.80 > 5 5 0.0

Total 25 25 5.2

Q2 =5.2 < 5.99. Therefore, the Fm x distribution is not significantly different from

the normal.

D.2 THE t TEST: AN OVERVIEW

A t test was used to determine whether the mean values for T3* and T6 * were

significantly different. The same test was used for Fmax,3 and Fmax,6

Before a t test was run, it was established using the Chi-Square test that both

distributions were of the same type: in each case the distributions were normal. Then, the t

test for dependent distributions was used. The hypotheses Ho1 and Ho2 , were as follows:

Ho1 : the means of the T*3,i and T*6,i are equal, i.e., the distribution T*3,i - T*6 ,i
has a mean not significantly different from 0.

Ho2: the means of the Fmax,3,i and Fmax,6,i are equal, i.e. the distribution

Fmax,3,i - Fmax,6,i has a mean not significantly different from 0.

A two sided test was performed. For each test, the t value was computed as follows:

t sample mean (T*3,i - T*6,i ) / (sample variance /sqrt(n)) (D. 1)
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The critical t value for a 95% level of confidence and 24 degrees of freedom is

t 24,0.25 = 2.064. If

-2.064 < t < 2.064 (D.2)

then it was concluded that the two distributions were not significantly different.

The t value for the T* distributions was 0.1, whereas for the Fmax distributions it was

1.69. Therefore both HoI and Ho2 are true.

0
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APPENDIX E

THE SUBJECTS AND THE ALGORMITMS

Table El. Thbe Subjects' Performance Versus the Algorithms'

Subject # Algorithm # Three Tasks Six Tasks

Subject Algorithm Subject Algorithm

20 3 0.695 0.719 0.773 0.564

21 2 0.601 0.665 0.683 0.580

22 4 0.582 0.558 0.594 0.486

23 4 0.543 0.558 0.577 0.486

25 5 0.662 0.627 0.624 0.530

26 1 0.554 0.654 0.664 0.559

27 3 0.806 0.719 0.815 0.564

28 3 0.666 0.719 0.693 0.564

29 5 0.677 0.627 0.722 0.530

31 4 0.541 0.558 0.584 0.486

33 2 0.608 0.665 0.67 1 0.580

35 6 0.790 0.692 0.699 0.635

36 5 0.636 0.627 0.559 0.530

37 6 0.7 10 0.692 0.695 0.635
38 5 0.643 0.627 0.674 0.530

39 1 0.591 0.665 0.421 0.559

40 3 0.737 0.719 0.699 0.564

41 6 0.610 0.692 0.718 0.635

44 3 0.670 0.7 19 0.7 14 0.564

45 2 0.591 0.665 0.711 0.580

46 6 0.613 0.692 0.804 0.635

50 6 0.668 0.692 0.661 0.635
51 3 0.830 0.719 0.738 0.564

52 6 0.677 0.692 0.636 0.635

53 6 0.610 0.692 0.718 0.635
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APPENDIX F: THE ALGORITHMS AND THE 5NTERNAL VARIABLES

FOR FOUR THREATS

F. 1. ALGORITHM 1

F. 1. 1 Definition of Variables

Input vector X

X=(dl/vI, d2/v2, d3/v3, d4/v4)

Internal Variables

wl=dl w5=vl

w2=d2 w6=v2

w3-d3 w7=v3

w4=d4 w8=v4

w9=trunc(dl/1O)=dl 1 w13=trunc(v1110)=vl 1

w 1O-trunc(d2/1O)=d2 I wl4=-trunc(v2/10)=v2 1

wl1l=trunc(d3/10)=d3 1 wi 5=trunc(v3/1O)=v3 1

w 12=trunc(d4/1O)=d4 1 wi 6=trunc(v4/1O)=v41

w17 if d1lz2O and vl>90 then Y=RL1 stop, else

w18 -if d2<20 and v2>00 then Y=R2 stop

else

w19-dll/vll=T1

w20-d2l1/v2l =T2

w21= min(TI,72)

w22-distance of w21=d(w21)

w23=speed of w21 =v(w2 1)

w24 if d3<20 and v3>90 then Y=R3 stop

else
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w25=runcd~w~)/10

w26-=trunc(d(w2 1)/10)

w27=w25 / w26=TS 1I

w28=d31/v31=T3

w29=min(TS 1 ,T3)
w30=distance associated to w29, = d(w29)

w3 1: speed associated to w29, = v(w29)

w32 if d4<20 and v3>90 then Y-R 1 stop

else

w33=trunc(d(w30/10))

w34=trunc(s(w3 1/10))

w35=w331w34=TS2

w36=d4 1/v41 =T4

w37--min(TS2,T4)
w38--ratio associated to w37=Y

stop

Output Vector Y

F.1.2 Explanatory Notes

The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables defined by the same

notation are based on the same model.)

dij-jth digit of distance of ratio i. dij ranges from 1 to 9

w21= min(T1,T2). these variables may only take three values 0,1 or 2

0 if the two values are the same

1 if the first is smallest, TI in this case

2 if the second is smallest, T2 in this case -

w25,w29,w37 are the same type of internal variables
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w23 = distance associated to w22
w23 takes the value of the disance associated to the ratio corresponding to the value

of w22. If w22 had taken a value of 1, w23 would take the values of d(R1), since

RI would be smaller than R2, such a ratio could be noted RI'. If w22 takes a
value of 0, each ratio (either RI or R2) has a probability of 0.5 of being chosen.

w26, w30 and w38 are the same type of internal variables.

1

0~_

S

116

rI



F.2. ALGORITHM 2

F.2. 1 Definition of Variables

Input vector X

X=(d1/v1I, d2/v2, d3/v3, d4/v4)

Internal Variables

wl=di w5=vi

w2=d2 w6--v2

w3=d0 w7=v3

w4=d4 w8=v4

w9=trunc(dl/1O)=di 1 w13=trunc(vl/i0)=vl 1

wl10=trunc(d2/i 0)=d2 1 wi 4=trunc(v2/1 0)=v2 I

wi 1=trunc(d3/i O)=d3 1 wi 5=trunc(v3/i0)=v3 1

w 12=trunc(d4/i0)=d41 wi 6=trunc(v4/1O)=v4 1

w17 if dl<20 and vl>90 then Y=Rj stop else

w18 if d2<20 and v2>90 then Y=R 2 stop else

w 19-=round ( (d1 - dlii) /10)

w20=dll1+wl9

w21=-round ( (vi1 - vii1) /10)

w22=v II+w21

w23= round ( (d2 - d21 ) /10)

w24 = d21+w23

w25 =round ( (v2 - v21 )/10)

w26=v2i+w26
w27=w22/w22=Tj

w28=w24w26=T 2

w29= min(T 1,T2 )
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w30 =distance associated to ratio of w29=d(RS 1)

w31. =speed associated to ratio of w29=v(RS I)

w32 if d3<20 and v3>90 then Y=R3 stop else

w33=trunc [d (RS 1) /10)] = d I(RS 1)

w34=round [ ( d(RS 1) - d 1 (RS 1) )/10]

w35=dl (RSI)+w34

w36--trunc (v(RSi)/10) = vl1(RS 1)

w37=round [ (v(RSI) - v1(RSI) )/l0]

w38=vl1(RS 1)+w37

w48=w35/w38=Ts,

w49--round [ ( d3 - d31, ) /101

w50~d3l1+w49
w51I=-round [ (v I - 031)/10

w52=v3l+w51

w53=w51I/w52= T3

w54---min(TS 1,T3)

w55--ratio associated to w54 =RS2

w56 if d4<20 and v3>90 then Y=R4 stop else

w57=trunc [d (RS2) /10)] = dl(RS2 )

w58=round [ d(RS2) - dl (RS2) )/10]

w59=dl1(RS 2)+w5 8

w60=trunc (v(RS2)/lO) = v I(RS2)

w61=round [ ( v(RS2) - vl(RS2) )/10]

w62=vl (RS I)+w61

w63=w59/w62=TS2

w64--round [( d4 -d41 )/10]

w65--d3l1+w64
w66=round [ (v4 - v4 1)/10]

w67=v4l1+w66

w68=w65/w66= T4
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w69=nin(Ts 2,T4)
w70--ratio associated to w69=Y stop

Output Vector Y

F.2.2 Explanatory Notes

The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables defined by the same

notation are based on the same model.)

dij = jth digit of distance of ratio i. dij ranges from 1 to 9

dl (RSi) = first digit of the distance of ratio (RSi).

d2(RSi) = second digit of the distance of ratio (RSi).

{ ifdl2>5
w31 = round(d 12/10) 0ifdl2< 5

w41 = min(T1 , T2 ). these variables may only take three values 0,1 or 2

0 if the two values are the same

1 if the first is smallest, T1 in this case

2 if the second is smallest, T2 in this case

w41, w54, w67 are the same type of internal variables

w42 = ratio associated to w41

w42 takes the value of the ratio corresponding to the value of w41.

If w41 had taken a vdlue of 1, w42 wouild take the values of R1 , given that RI is

smaller than R2 , such a ratio could be noted RS 1. The probability distribution of
RSI is different from that of Rl,(that of w25 is different than that of wl or w2).
If w41 takes a value of 0, each ratio (either R1 or R2 ) has a probability of 0.5 of

being chosen.

w42, w55 and w68 are the same type of internal variables.
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w44 = round(d2(RS 1)/10) = first digit of the distance of the ratio corresponding to RS 1

w46 = round(d2(RS 1)/10) =round off value of the 2 nd digit of the distance of the rat'-o

corresponding to RS 1.
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F.3. ALGORITHM 3

F.3. 1 Definition of Variables

Input vector X

X=(dl/vl, d2/v2, d3/v3, d4/v4)

Internal Variables

wi= dl/vl=R1
w2-d2/v2=R2

w3=d3/v3=R3

w4=d4/v4=R4

w5 if [(di/vi )<1 Ithen continue page 3 for ratios <1

else ratios>1

w6=trunc(dl/v 1)

w7=approximate(dl/vl1-trunc(d 1/v 1)

w8=w14+wlC6-1j 0

w9=trunc(d2/v2)

w 1O=approximate(d2/v2-trunc(d2/v2))

w1I1I=w 18+w2O= 12
w12 =min(ll,12 )

w13 = ratio associated to w12=RSi

wl14=trunc(d3/v3)

wl5=approximate( d3/v3 - trunc(d3/v3))

wl6=w14+w15=13

w17=trunc(RSI)

w1I8=approxi mate( RSI- trunc(RSI))
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w19=w17+w18= IRSI

w20 = min (IRS 1, 13)

w21=-ratio, associated to w2O=RS2

w22=trunc(d4/v4)

w23=approximate(d4/v4 -trunc(d41v4))

w24=w22+w23=l 4

w25=trunc(RS2)
w26=approximate( RS2 - trunc(RS2 ))

w27=w25+w26= IRS2

w28=min(1R5 2 , W4

w29--ratio associated to w28=Y

ratios <1

w30 if dl<20 and vl>90 then Y=Rl stop

else

w3 1 if d2<20 and v2>90 then Y=R2 Stop

else
w32=trunc(v 1/di)

w33=approximate(vl/dl -trunc(vl/dl))

w34=w32+w33=lj
w35=trunc(v21d2)

w36=approximate(v2/d2-trunc(d2/v2)

w37=w35+w36= 12

w38 =max(I 1 ,I 2 )
w39 = ratio associated to w38 = RS I

w40 if d3<20 and v3>90 then Y=R 3 Stop

else

w41 =trunc(v3/d3)

w42=approximate( v3/d3 - trunc(v3/d3)

w43=w4I1+w42=I 3  I

w44=trunc( 1/RS I)

w45 =approximate( (1/RSI) - trunc( 1/Re0))

122



w46=-w44+w45= IRS 1
w47 = max (IRS 1, 13)
w48-ratio associated to w47=RS2

w49 if d4<20 and v3>90 then Y=Rl stop

else

w50=trunc(v4/d4)

w5 1=approximate( v4/d4 - trunc(v4/d4))

w52=w50+w51=140

w53=trunc( 1/RS2)
w54=approximate( (l/RS2) - trunc(l/RS2))

w55=w53+w54= IRS2
w56=max(IRS2, W4
w57-ratio associated to w56--Y

stop

Output Vector Y=di/vi

F.3.2 Explanatory Notes

The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables defined by the same

notation are based on the same model.)

w 12 = min(11 , 12). these variables may only take three values 0,1 or 2

0 if the two values are the same

1 if the first is smallest, 11 in this case

2 if the second is smallest, 12 in this case

w12, w20, w28 are the same type of internal variables

w38 =max(I 1, 12). these variables may only take three values 0, 1 or 2
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0 if the two values are the same

w38= 1 if the first is largest, Il in this case

2 if the second is largest, 12 in this case

w38,w47,w56 are the same type of internal variables

w13 = ratio associated to w12
w13 takes the value of the ratio corresponding to the value of w12.

If w12 had taken a value of 1, w13 would take the values of Rl , given that R1 is

smaller than R2, such a ratio could be noted R 1'.

If w12 takes a value of 0, each ratio (either Rl or R2) has a probability of 0.5 of

being chosen.

w13, w21, w29, w39,w48,w57 are the same type of internal variables.

w7 - approximate(dl/vl-trunc(dl/vl)

w7 may only take 3 values 0, 0.25 or 0.75.

0.00 if approximate(..) <0.25

w16= 0.75 if approximate(..) >0.75

0.25 otherwise S

w7, wlO, w15, w18, w23, w33, w36, w42, w45, w48, w51, w54 are of the same type.
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FA4 ALGORITHM 4

F.4. 1 Definition of Variables

Input vector X

X=(dl/vl, d2/v2, d3/v3, d4/v4)

internal Variables

wl=dl w5=vl

w2=d2 w6--v2

w3=d0 w7=v3

w4=d4 w8=v4

W9 i dl<0 ad vl90 ten =Rlstopels

w10 if d2<20 and v2>90 then Y=R2, stop else

wi11 = min(dl,d2)

wl2= max(vl,v2)

w 13 = corresp(wlI l,w 12)

wl4= dl-vl+1O

w15 = d2-v2

w16=min(w14,w15)

w 17=d2-v2+lO

w18=dl-vl

w19=min(w17,w18)

w20=distance of ratio associated to(w 13,w1I6,w 19)=d (RS 1)

w21 =distance of ratio associated to(w 13,w1I6,w 19)=v (RS 1)

w22 if d3<20 and v3>90 then Y=R3 stop

else

w23= min(d (RSI),d3)
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w24 = max(v(RSI),v3)

w25 = corresp( w23,w24)

w26 = d (RS)- v (RS) +10

w27= d4 - v4
w28--min(w26,w27)

w29 = d4-v4+10

w31= min(w28, w29 )

w32=distance associated to the ratio (w25,w28,w31) = d (RS2)

w33=distance associated to the ratio (w25,w28,w3 1) = v (RS2)

w34 if d4<20 and v4>90 then Y=R4 stop

else

w35 = min (d(Rs 2),d4)

w36 = max(v(Rs 2),v4)

w37 = corresp (w53,w54)

w38 = d(Rs 2 ) - V(RS2) +10

w39 = d4-v4
w40 = min(w38,w39)

w41 = d(Rs 2 ) - v(Rs 2)

w4 2= d4 - v4+ 10

w43 = min(w41,w42)

w44 = ratio associated to (w37,w40,w43) = Y = di/vi

Output Vector Y

F.4.2 Explanatory Notes

The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables described using the same

notation are based on the same model.)
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I if the first element (in this case dl) is the smallestwil --mrin(dl, d2)= {-
2 if the second element (in this case d2) is the smallest

1

w12 =max(vl, v2) ={ i if the frst element (in this case vl) is the largest
w 12 maxv 1, 2)2=if the second element (in this case vd2) is the largest

[ lif wl5=w16=1

w13 = corresp (w15,w16) = 2 if w15 = w16 = 2

0 otherwise

{ dl-vl+10 if w13=0
w14 = di-vI + 10=

nonexistent otherwise

d2-v2 if w13 = 0{ nonexistent otherwise

{1 if w13=0Oand w14 <w15

w16 = rain (w14, w15) = nonexitent if w 13 < > 0

0 otherwise
if7=d=d2-v2+lO ifw 13=Oandw16=

w17=md2 -wv2,+10 nonexistent otherwise

d2-v2 if w13= Oandw16= 0

Snonexistent otherwise

f 2 if w13 =0, w16=0, andwl7 <w18

w19=min(wl7, w18)= 0 if w13=O andwl6=Oand
(w17 > w18 or w17 =w18)

nonexistent otherwise 5
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Rl i w13= 1 r w1 =0

w20 ratio associated to (wl3, w16 , w19) R2 i w13 =2 orw16 =2

R1 or R 2 p0.5) ifw 9 0
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F.5. ALGORITHM 5

F.5.1 Definition of Variables

Input vector X

X=(dl/vl, d2/v2, d3/v3, d4/v4)

Internal Variables

wl=dl w5=vl

w2=d2 w6=v2

w3=d3 w7=v3

w4=d4 w8=v4

w9 if dl<20 and vl>90 then Y=Rl stop else

W10 if d2<20 and v2>90 then Y=R2 stop else

w I I= min (d l,d2)

w 12 =max(vl,v2)

w 13 =corresp(w Il,w 12)

w14 =dl-d2

w15 = vl-v2

w 16 =min(w 14,w 15)
w 17 = distance of ratio associated to (w1I3,w 16) =d (RS 1)

w 18 = speed of ratio associated to (w 13,w 16) v (RS 1)

W19 if d3<20 and v3>90 then Y=R3 stop else

w20= min(d (RSI),d3)

w21 = max(v (RSI),v3)

w22 = corresp( w20,w2 1)
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w23 = d (RS1) -d3
w24 = v(RI) - v3

w25 = min(w23,w24)

w26 = distance of ratio associated to (w36,w29) = d(RS2)

w26 = speed of ratio associated to (w36,w29) =v(RS 2)

w27 if d4<20 and v4>90 then Y=R4 stop else

w28 = min (d(RS2 ),d4)

w29 = max(v(RS2),v4)

w30 = corresp (w39,w40)

w31 = d(RS2 ) -d4

w32 = v(RS2 ) - v4

w33-niin(w3 1 ,w32)

w49--ratio associated to(w30,w33) =Y

Output Vector Y

F.5.2 Explanatory Notes

The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables described using the same

notation are based on the same model.)

r1 if the first element (in this case dl) is the smallest

wil min~l~d2= 12 if the second element (in this case d2) is the smallest

r1 if the first element (in this case vi1) is the largest
w12 maxvlv2= 12 if the second element (in this case v2) is the largest
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lif wll=w12=1

w13=corresp(wll,w12)= I2if wll=wl2=2

rdl -d2 if w13 =0
w14=dl -d2= nonexistent othierwise

1 if w13 = 0and w14 <w15

2 if w13 = 0and w14 >w15
w16=min (w14, w15)=

nonexitent if w 13 < >0

0 otherwise

RI Rifw13 =l1or w16=1I
w 17 =ratio associated to (w 13, w 16) =R 2 if w13 = 2 or w16 = 2

RI or R2 (p=0.5) if w19 0
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F.6. ALGORITHM 6

F.6.1 Definition of Variables

Input vector X

X=(dl/vl, d2/v2, d3/v3, d4/v4)

Internal Variables

wl=dl w5=vl

w2=d2 w6=v2

w3=d3 w7=v3

w4=d4 w8=v4
S

w9 = trunc(dl/10) =dl I w13 =trunc(vl/10) = v 11
wlO =trunc(d2/10) - d21 w14 =trunc(v2/10) = v21
w 11 =trunc(d3/10) = d31 w15 =trunc(v3/10) = v31
w12 =trunc(d4/10) - d41 w16 =trunc(v4/10) = v41

w17 if dl<20 and vl>90 then Y=R1 stop else k

w18 if d2<20 and v2>90 then Y=R2 stop else

w19 = min(dl,d2)
w20 = max(vl,v2)

w21 = corresp(w 15,w 16) 7,

w22 = round [(dl - dl 1)/10]

w23 = dl i+w22

w24 = round [(vl - vl 1)/10]
w25 = vi i+w24 r.

w26 = w22/w23 = T1

w25 = round [(d2 - d21)/101

w26 = d21 +w26 S
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w27 =round [Nv - v21)/10]

w28 v21+ w27

w29 =w26/w28 = T2

w30 =min(w26,w29)

w31= distance of the ratio associated to(w21,w30) = d (RSI)

w32= distance of the ratio associated to(w21I,w30) = v (RS 1)

w33 if d3<20 and v3>90 then Y=R 3 stop else

w34 = min(d(RSj),d3)

w35 = max(v(RSI),v3)

w36 = corresp( w34,w35)

w37 = trunc: ( d(RSi)/10) dl1(RS 1)

w38 = round [(d(RSI) - dl(RSI) /10]

w39 = dl(RSI) + W38

w40 = trunc ( v(RSij)/1 0 v v1(RS 1)

w4l = round [( v(RS 1) - vlI(RS 1) /10]

w42 = v1(RSI) + W41

w43 =w39 /w42 = TRS I

w44 =roundt[(B -d031)I10]
w45 =d31 + w27

w46 =round [(N -031)/ 10]

w47 = v31 + w46

w48 = w45/w47 = T3

w49 =nmin( TRS ,T3)

w50 = distance of ratio associated to(w36,w49) =d (RS2)

w5 1 = distance of ratio associated to(w36,w49) =V (RS2)

w52 if d4<20 and v4>90 then Y=R4 stop else
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w53 = min(d(RS2),d4)

w54 = max(v(RS2),v4)

w55 = corresp (w47,w48)

w56 = trunc ( d(RS2)/10) = dl(Rs2)
w57 = round [( d(Rs 2 ) - dl (Rs 2) /10]

w58 = dl(Rs2) + w57
w59= trunc ( v(RS2)/10) -vl(RS2)

w60= round [( v(RS2) - v1(RS2) /10] I

w61 = vl(Rs2) + w60
w62 = w58 / w61 = TRS2

w63 = round [ (-d41) / 10]

w64 = d41 + w63
w65 = round [ (v4 -v41) / 10]

w66 = v41 + w65

w67 = w64/w66 = T4
w68 = min( TRS2, T4 )

w69=ratio associated to(w55,w68) =Y

Output Vector Y

F.6.2 Explanatory Notes

The different notations used in the previous algorithm may be described as follows:
(Only one variable of each type is described. The other variables defined by the same
notation are based on the same model.)

1 if the first element (in this case dl) is the smallestw 19 --min(dl1, d2)=;...
2 if the second element (in this case d2) is the smallest

I if the first element (in this case vl) is the largest % %
2 if the second element (in this case v2) is the largest
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S1if w15 =w16 =1

w21 = corresp (w15, w16)= 2 if w151 =w16= 2

0 otherwise

If w21 is not equal to 0, the variables w21 to w29 have a probability of 0 of
occuring, that is they only exist in the case when w21 is equal to 0.

RI if w2l = 1o r w30 =1

w17 = distance of ratio associated to (w17, w28) = R2 if w21 = 2 or w30 = 2

Sdlor d2 (p = 0.5) if w2l= 0 and
w30 = 0

S

7
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APPENDIX G

ENTROPY OF THE VARIABLES OF THE ALGORrITMS

The entropy of most variables described in Chapter VI was derived using computer

simulations. In some cases however, the entropy of 'non-static variables' was estimated

from that of other similar variables: The decrease in entropy after each stage was

approximated to that of a similar variable. For each algorithm the approximations were

different.

G. 1 ALGORITHM 1

For Algorithm 1, the decrease in entropy of the truncated speeds and distances were

derived from the rate of decrease of the speeds and distances after each decision. The rate

is noted 'Multiplyer' in Table G.1

The variables of Table G.1 have been defined in Appendix F. They are described

again for Algorithm 1, but will not be described later.

di: distance of ratio i

vi: speed of ratio i

dsi: distance of ratio chosen as smallest at decision si- 1, where si =2 to 6 0
vsi: speed of ratio chosen as smallest at decision si-1

di 1: first digit of the distance of ratio i

vi i: first digit of the speed of ratio i

trunc dsi: first digit of the distance of ratio chosen as smallest at decision si- 1

trunc vsi: first digit of the speed of ratio chosen as smallest at decision si- 1S

decision i: decision variable to choose the smallest of the two ratios at comparison i

RSi = trunc dsi / trunc vsi: Variable used to make comparison si

di < 20 and vi > 90: Decision variable to check for very small ratios
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Table G. 1 Algorithm 1

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six tasks
of Variable

input 45.764 77.683
di 4 or 7 6.409 25.635 44.862
Ai 4 or 7 6.409 25.635 44.862
dii 4 or7 3.165 12.661 22.156
vii. 4 or7 3.158 12.630 22.103
di<20 and vi>90 4 or 7 0.183 0.733 1.282
dil/vil 4 or 7 6.248 24.992 43.735
decision 1 1.150 1.150 1.150

decision 2 1.082 1.082 1.082
ds2 6.229 6.229 6.229
vs2 6.244 6.244 6.244
trunc ds2 1.029 3.076 3.076 3.076
trunc vs2 1.026 3.077 3.077 3.077
Rs2 5.654 5.654 5.654 4

ds3 6.056 6.056 6.056
vs3 6.021 6.021 6.021
decision3 1.004 1.004 1.004
trunc ds3 1.029 2.991 2.991 2.991
trunc dv3 1.037 2.967 2.967 2.967
Rs3 5.457 5.457 5.457

ds4 5.924 5.924
vs4 5.761 5.761
decision4 0.952 0.952
trunc ds4 1.022 2.926 2.926
trunc dv4 1.045 2.839 2.839
Rs4 5.126 5.126

ds5 5.821 5.821
vs5 5.604 5.604
decisionS 0.920 0.920
trunc ds5 1.018 2.875 2.875
trunc vs5 1.028 2.761 2.761
Rs5 4.852 4.852

ds6 5.736 5.736
vs6 5.422 5.422
decision 6 0.902 0.902
trunc ds6 1.015 2.833 2.833
trunc vs6 1.034 2.671 2.671a
Rs6 4.619 4.619
Output 11.042 10.460
Total Entropy 210.103 386.700
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G.2 ALGORITHM 2

For Algorithm 2, the decrease in entropy of the rounded speeds and distances were

derived from the rate of decrease of the speeds and distances after each decision. The rate

is noted 'Multiplyer' in Table G.2. The variables of Table G.2 are very similar to those of

Table G.1, except that 'round dsi' is used instead of 'trunc dsi'. Also round(di2/10) is the

approximated value of the second digit whei it is divided by 10. It can only take a value of

0or 1.

Table G.2 Algorithm 2

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

45.764 77.683 S
di 4 or 7 6.409 25.635 44.862
vi 4 or 7 6.409 25.635 44.862
di<20 and vi>90 4 or 7 0.183 0.734 1.284
dil 4 or 7 3.165 12.661 22.156
vil 4 or 7 3.158 12.630 22.103
round(di2/10) 4 or 7 0.993 3.973 6.952 0
round(vi2/10 4 or 7 0.993 3.973 6.952
round di 4 or 7 3.239 12.956 22.673
round vi 4 or 7 3.249 12.996 22.742
rou(di)/rou(vi) 4 or 7 6.428 25.711 44.994
decision1 1.145 1.145 1.145

_0
di 6.169 6.169 6.169vi 6.316 6.316 6.316

di2 3.047 3.047 3.047
vi2 3.112 3.112 3.112
round(di2/10) 0.956 0.956 0.956
round(vi2/10 0.979 0.979 0.979
round ds2 1.039 3.127 3.127 3.127
round vs2 1.015 3.202 3.202 3.202
Rs2 6.050 6.050 6.050
decision 2 1.076 1.076 1.076

di 5.996 5.996 5.996
A 6.167 6.167 6.167
di3 2.962 2.962 2.962
vi3 3.039 3.039 3.039
round(di3/10) 0.929 0.929 0.929
round(vi3/10 0.956 0.956 0.956
round ds3 1.029 3.040 3.040 3.040 0
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Table G.2. (Continued)

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

round vs3 1.024 3.126 3.126 3.126
Rs3 5.933 5.933 5.933
decision3 0.995 0.995 0.995

di 5.870 5.870
vi 6.020 6.020

dA2.899 2.899
vi4 2.966 2.966
round(di4/1 0) 0.910 0.910
round(vi4/10 0.933 0.933
round ds4 1.021 2.976 2.976
round dv4 1.024 3.052 3.052
Rs4 5.812 5.812
decision4 0.940 0.940

di 5.773 5.7730
vA 5.883 5.883
diS 2.851 2.851
viS 2.899 2.899
round(di5/10) 0.895 0.895
round(vi5/1 0 0.912 0.912
round ds5 1.017 2.926 2.926
round dv5 1.023 2.983 2.983
Rs5 5.347 5.347
decisionS 0.905 0.905

di 5.698 5.698
vi 5.757 5.757
di6 2.814 2.814
vi6 2.836 2.836
round(di6/1 0) 0.883 0.883
round(vi6/10 0.892 0.892
round ds6 1.013 2.889 2.889
round vs6 1.022 2.918 2.918
Rs6 5.151 5.151
decision 6 0.884 0.884

Output 11.042 8.394

Total Entropy 262.03 1 480.059
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G.3 ALGORITHM 3

Algorithm 3 considers the ratios less than one and the ratios larger than one

separately. The multipliers were only required for the ratios larger than one. (Many of the

variables have already been defined for Table G.1 in section G.1.1.) The following

variables still need to be defined:

integer = trunc(di/vi)

round leftover = round [di/vi - trunc(di/vi) "S

ratio RS 1 = integer + round, the value used to make the comparison

Table G.3 Algorithm 3

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

Input 45.764 77.683 0
di/vi 4 or 7 12.393 49.570 86.748
di 4 or7 6.409 25.635 44.862
vi 4 or 7 6.409 25.635 44.862

Ratios >1 0.471 0.520 0.991 0.991

integer 4 or 7 1.968 7.873 13.777
round leftover 4 or 7 1.357 5.430 9.502
ratio RS1 4 or 7 2.264 9.054 15.845
decisionl 1.491 1.491 1.491

di/vi 10.955 10.955 10.955
round left over 1.291 1.291 1.291
integer 1.087 1.087 1.087
ratio RS2 1.215 1.215 1.215
decision2 1.494 1.494 1.494

S

di/vi 10.427 10.427 10.427
round left over 1.248 1.248 1.248
integer 0.736 0.736 0.736
ratio RS3 1.712 1.712 1.712
decision3 1.491 1.491 1.491

0

di/vi 10.173 10.173
round left over 1.210 1.210
integer 0.599 0.599
ratio RS4 1.444 1.444
decision4 1.487 1.487

1
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Table G.3 (Continued)

Trials of Trials of

Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

di/vi 9.948 9.948
round left over 1.167 1.167
integer 0.552 0.552
ratio RS5 1.285 1.285
decision5 1.459 1.459

di/vi 9.763 9.763
round left over 1.115 1.115
integer 0.539 0.539
ratio RS6 1.173 1.173
decision6 1.409 1.409

Ratios<1

dik2O and vi>90 0.139 0.558 0.976
trunc(vl/dl) 4 or 7 1.647 6.587 11.528

appr. left. trunc 4 or 7 1.357 5.430 9.502
trunc(vi/di)+app 4 or 7 2.264 9.054 15.845
decisioni 1.484 1.484 1.484

di/vi 10.747 10.747 10.747
round left over 0.915 1.484 1.484 1.484
integer 2.28 1 2.28 1 2.28 1
ratio RS2 0.634 3.57 1 3.57 1 3.57 1
decision2 1.301 1.301 1.301

di/vi 10.280 10.280 10.280
round left over 1.017 1.459 1.459 1.459
integer 2.405 2.405 2.405
ratio RS3 0.984 3.63 1 3.63 1 3.63 1
decision3 1.169 1.169 1.169

di/vi 9.968 9.968
round left over .0.999 1.460 1.460
integer 2.42 1 2.42 1
ratio RS4 1.003 3.619 3.619
decision4 1.094 1.094

di/vi 9.730 9.730
round left over 1.004 1.454 1.454
integer 2.409 2.409
ratio RS5 1.009 3.586 3.586
decisionS 1.050 1.050Oi

di/v 9.534 9.5340
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Table G.3 (Continued)
Trials of Trials of

Deserirntion Multiplyer Frequency Entropy Three Tasks Six Tasks
Of Variable

round left over 1.005 1.446 1.446
integer 2.389 2.389
ratio RS6 1.010 3.551 3.551
decision6 1.024 1.024

Output 11.042 10.460
Total 275.582 513.594
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G.4 ALGORITHM 4

The change in entropy after each comparison has been set to be the same as for

Algorithm 5, since the two algorithms are very similar.

Table G.4. Algorithm 4

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

input 45.764 77.683
di 4 or 7 6.409 25.635 44.862
vi 4 or 7 6.409 25.635 44.862
di<20,vi>90 4 or 7 0.139 0.558 0.976

Decision 1
min(di ,d2) 3 or 6 1.000 1.000
max(vi,v2) 3or6 1.000 1.000
Corr used a15 1.220 1.220
di-vi+i0 4 or 7 6.911 6.911
di-vi 6.886 6.886
mini. 0.988 0.988
di-vi+10 6.537 6.537
di-vi 6.829 6.829
min2 0.881 0.881

Decision2
di 6.321 6.321 6.321
Ai 6.321 6.321 6.321
min(d(Rsl1),d3) 0.925 0.925 0.925
max(v(RS 1),v3) 0.925 0.925 0.925
Corr 1.128 1.128 1.128
di-vi+10 used a15 7.007 7.007 7.007
di-vi 6.791 6.791 6.791
mini1 0.914 0.914 0.914
di-vi+10 6.447 6.447 6.447
di-vi 6.735 6.735 6.735
min2 0.815 0.815 0.815

Decision3
di 6.073 6.073 6.073
vi 6.073 6.073 6.073
mrin(d(Rs2) ,d4) 0.833 0.833 0.833
max(v(RS 1),v4) 0.833 0.833 0.833
Corr 1.016 1.016 1.016
di-vi+10 6.733 6.733 6.733
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Table G.4 (Continued)
Trials of Trials of

Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

di-vi 6.525 6.525 6.525
mini 0.823 0.823 0.823
di-vi+10 6.358 6.358 6.358
di-vi 6.643 6.643 6.643
min2 0.734 0.734 0.734

Decision 4
di 5.875 5.875
vi 5.875 5.875
min(d(Rs3) ,d5) 0.761 0.761
max(v(Rs3),v5) 0.761 0.761
corr 0.929 0.929
di-vi+ 10 6.513 6.513
di-vi 6.312 6.312
mini 0.752 0.752
di-vi+10 6.150 6.150
di-vi 6.425 6.425
min2 0.671 0.671

Decision 5
di 5.710 5.710
vi 5.710 5.710
min(d(Rs4),d6) 0.709 0.709
max(v(Rs4),v6) 0.709 0.709
corr 0.864 0.864
di-vi+10 6.331 6.331
di-vi 6.135 6.135
minl 0.700 0.700
di-vi+10 5.978 5.978
di-vi 6.246 6.246
min2 0.624 0.624

Decision 6
di 5.573 5.573
vi 5.573 5.573
min(d(Rs5) ,d7) 0.670 0.670
max(v(Rs5),v7) 0.670 0.670
corr 0.817 0.817
di-vi 10 6.178 6.178
di-vi 5.987 5.987
mini 0.661 0.661
di-vi+10 5.834 5.834
di-vi 6.095 6.095
min2 0.590 0.590

Output entropy 11.042 10.460
Total entropy 227.858 417.450

144



G.5 ALGORITHM 5

The ra!C, c-' change of entropy of the variables of algorithm 5 were assumed to be

the same as taht of the the decision variable. The variables were described in Appendix F.

Table G.5. Algorithm 5

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

input 45.764 77.683
di 4 or 7 6.409 25.635 44.8620
vi 4 or 7 6.409 25.635 44.862
di<20,vi>90 4 or 7 0.087 0.347 0.607

mni(dl,d2) decrease 1.000 1.000 1.000
max(vl,v2) same as the 1.000 1.000 1.000
CO~RR decisions 1 1.228 1.228 1.228
di-vi 6.975 6.975 6.975
deci 1.100 1.100 1.100

de2 1.081 1.018 1.018 1.018
di 6.321 6.321 6.321
vi 6.321 6.321 6.321
di-vi 1.014 6.879 6.879 6.879
min(dl1,d2) 0.925 0.925 0.925
max(vl,v2) 0.925 0.925 0.925
CORR 1.136 1.136 1.136

de3 1.111 0.916 0.916 0.916
di 6.073 6.073 6.073
vi 6.073 6.073 6.073
di-vi 1.041 6.610 6.610 6.610
min(dl,d2) 0.833 0.833 0.833
max('iI,v2) 0.833 0.833 0.833
CORR 1.023 1.023 1.0230

de4 1.094 0.838 0.838
di 5.875 5.875
vi 5.875 5.875
di-vi 1.034 6.394 6.394
rnin(dl ,d2) 0.761 0.761
max(vl,v2) 0.761 0.761
CORR 0.935 0.935

0.000
deS 1.075 0.780 0.780
di 5.710 5.710
vi 5.710 5.710
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Table 0.5 (Continued)
Trials of Trials of

Description multiplyer Frequency Entropy Three Tasks Six Tasks

of Variable6.1

d-i1.029 6.215 0.709

in-d 42 0.709 0.709
maxn(vld2 0.709 0.870

rn x v ,v2) 08 00.739
COR1.058 0.7375.7

de6 ~5.5735.7
di 5.573 5.05

dvi 1.025 6.065 60

in-di , 0.670 0.670

rnax(vl ,v2) 0.670 0.670

ORRa~ l~2 
0.823082

Otpu 
11.042 10.460

oupt165.615 297.915

Total Entropy
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G.6 ALGORITHM 6

The rate at which the entropy changes after each decision for the non-static variables

of algorithm 6 is derived from algorithm 5 and algorithm 2, since this algorithm (6) is a

combination of both.

Table G.6 Algorithm 6

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

input 45.764 77.683 •
di 4 or 7 6.409 25.635 44.862
vi 4 or 7 6.409 25.635 44.862
di<20 and vi>90 4 or 7 0.087 0.347 0.607
dil 4 or 7 3.165 13.168 23.045
vii 4 or 7 3.158 12.672 22.176
min(dl,d2) 1.000 1.000 1.000
max(vl,v2) 1.000 1.000 1.000
CORR 0.549 0.549 0.549
round(di2/10) 0.994 3.974 6.955
round(vi2/10 0.994 3.974 6.955
round di 3.238 12.950 22.663
round vi 3.243 12.971 22.699 S
Rsl 6.424 25.695 44.966
decl 1.238 1.238 1.238

di 6.169 6.169 6.169
vi 6.316 6.316 6.316
dil 3.047 3.047 3.047
vii 3.112 3.112 3.112
nin(ds2,di) 0.927 0.927 0.927

max(vs2,vi) 0.927 0.927 0.927
CORR 0.508 0.508 0.508
round(di2/10) 0.956 0.956 0.956
round(vi2/10 0.979 0.979 0.979
round ds2 3.116 3.116 3.116
round vs2 3.196 3.196 3.196
RS2 6.046 6.046 6.046
dec2 1.079 1.148 1.148 1.148

di 5.996 5.996 5.996 S
vi 6.167 6.167 6.167
dil 2.962 2.962 2.962
vii 3.039 3.039 3.039
min(ds3,di) 0.830 0.830 0.830
max(vs3,vi) 0.830 0.830 0.830

CORR 0.455 0.455 0.455 0
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Table G.6 (Cuntiaiucd) MF

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

round(di2/10) 0.930 0.930 0.930
round(vi2/10 0.956 0.956 0.956
round ds3 3.029 3.029 3.029
round vs3 3.120 3.120 3.120
Rs3 5.592 5.592 5.592
dec3 1.117 1.028 1.028 1.028

di 5.870 5.870
vi 6.020 6.020
dil 2.899 2.899
vii 2.966 2.966
min(ds4,di) 0.804 0.804
max(vs4,vi) 0.804 0.804
CORR 0.441 0.441
round(di2/10) 0.936 0.936
round(vi2/10 0.933 0.933
round ds4 2.965 2.965
round vs4 3.046 3.046
Rs4 5.478 5.478
decision4 1.033 0.995 0.995

di 5.773 5.773
A 5.883 5.883
dii 2.851 2.851
vii 2.899 2.899
min(ds5,di) 0.731 0.731
max(vs5,vi) 0.731 0.731
CORR 0.401 0.401
round(di2/10) 0.920 0.920
round(vi2/1 0 0.912 0.912
round ds5 2.916 2.916
round vs5 2.977 2.977 0

Rs5 5.040 5.040
decision5 1.100 0.905 0.905

di 5.698 5.698
vi 5.757 5.757
dl 2.814 2.814 0
vI 2.836 2.836
min(ds6,di) 0.714 0.714
max(vs6,vi) 0.714 0.714
CORR 0.392 0.392
round(di2/10) 0.909 0.909
round(vi2/10 0.892 0.892 -
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Table G.6 (Continued)

Trials of Trials of
Description Multiplyer Frequency Entropy Three Tasks Six Tasks
of Variable

round ds6 2.879 2.879
round vs6 2.913 2.913
RS6 4.932 4.932
decision6 1.024 0.884 0.884

Output 11.042 10.460
Total Entropy 268.995 502.530
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